skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Holographic immunoassays: direct detection of antibodies binding to colloidal spheres
The size of a probe bead reported by holographic particle characterization depends on the proportion of the surface area covered by bound target molecules and so can be used as an assay for molecular binding. We validate this technique by measuring the kinetics of irreversible binding for the antibodies immunoglobulin G (IgG) and immunoglobulin M (IgM) as they attach to micrometer-diameter colloidal beads coated with protein A. These measurements yield the antibodies’ binding rates and can be inverted to obtain the concentration of antibodies in solution. Holographic molecular binding assays therefore can be used to perform fast quantitative immunoassays that are complementary to conventional serological tests.  more » « less
Award ID(s):
2027013
PAR ID:
10219740
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
16
Issue:
44
ISSN:
1744-683X
Page Range / eLocation ID:
10180 to 10186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Key functions of antibodies, such as viral neutralisation, depend on high-affinity binding. However, viral neutralisation poorly correlates with antigen affinity for reasons that have been unclear. Here, we use a new mechanistic model of bivalent binding to study  >45 patient-isolated IgG1 antibodies interacting with SARS-CoV-2 RBD surfaces. The model provides the standard monovalent affinity/kinetics and new bivalent parameters, including the molecular reach: the maximum antigen separation enabling bivalent binding. We find large variations in these parameters across antibodies, including reach variations (22–46 nm) that exceed the physical antibody size (~15 nm). By using antigens of different physical sizes, we show that these large molecular reaches are the result of both the antibody and antigen sizes. Although viral neutralisation correlates poorly with affinity, a striking correlation is observed with molecular reach. Indeed, the molecular reach explains differences in neutralisation for antibodies binding with the same affinity to the same RBD-epitope. Thus, antibodies within an isotype class binding the same antigen can display differences in molecular reach, substantially modulating their binding and functional properties. 
    more » « less
  2. Due to the recent outbreak of the Zika virus (ZIKV) in several regions, rapid, and accurate methods to diagnose Zika infection are in demand, particularly in regions that are on the frontline of a ZIKV outbreak. In this paper, three diagnostic methods for ZIKV are considered. Viral isolation is the gold standard for detection; this approach can involve incubation of cell cultures. Serological identification is based on the interactions between viral antigens and immunoglobulin G or immunoglobulin M antibodies; cross-reactivity with other types of flaviviruses can cause reduced specificity with this approach. Molecular confirmation, such as reverse transcription polymerase chain reaction (RT–PCR), involves reverse transcription of RNA and amplification of DNA. Quantitative analysis based on real-time RT–PCR can be undertaken by comparing fluorescence measurements against previously developed standards. A recently developed programmable paper-based detection approach can provide low-cost and rapid analysis. These viral identification and viral genetic analysis approaches play crucial roles in understanding the transmission of ZIKV. 
    more » « less
  3. null (Ed.)
    While antibodies remain established therapeutic and diagnostic tools, other protein scaffolds are emerging as effective and safer alternatives. Affibodies in particular are a new class of small proteins marketed as bio-analytic reagents. They feature tailorable binding affinity, low immunogenicity, high tissue permeation, and high expression titer in bacterial hosts. This work presents the development of affibody-binding peptides to be utilized as ligands for their purification from bacterial lysates. Affibody-binding candidates were identified by screening a peptide library simultaneously against two model affibodies (anti-immunoglobulin G (IgG) and anti-albumin) with the aim of selecting peptides targeting the conserved domain of affibodies. An ensemble of homologous sequences identified from screening was synthesized on Toyopearl® resin and evaluated via binding studies to select sequences that afford high product binding and recovery. The affibody–peptide interaction was also evaluated by in silico docking, which corroborated the targeting of the conserved domain. Ligand IGKQRI was validated through purification of an anti-ErbB2 affibody from an Escherichia coli lysate. The values of binding capacity (~5 mg affibody per mL of resin), affinity (KD ~1 μM), recovery and purity (64–71% and 86–91%), and resin lifetime (100 cycles) demonstrate that IGKQRI can be employed as ligand in affibody purification processes. 
    more » « less
  4. The immune system employs soluble effectors to shape luminal spaces. Antibodies are soluble molecules that effect immunological responses, including neutralization, opsonization, antibody-dependent cytotoxicity and complement activation. These molecules are comprised of immunoglobulin (Ig) domains. The N-terminal Ig domains recognize antigen, and the C-terminal domains facilitate their elimination through phagocytosis (opsonization). A less-recognized function mediated by the C-terminal Ig domains of the IgG class of antibodies (Fc region) involves the formation of multiple low-affinity bonds with the mucus matrix. This association anchors the antibody molecule to the matrix to entrap potential pathogens. Even though invertebrates are not known to have antibodies, protochordates have a class of secreted molecules containing Ig domains that can bind bacteria and potentially serve a similar purpose. The VCBPs (V region-containing chitin-binding proteins) possess a C-terminal chitin-binding domain that helps tether them to chitin-rich mucus gels, mimicking the IgG-mediated Fc trapping of microbes in mucus. The broad functional similarity of these structurally divergent, Ig-containing, secreted effectors makes a case for a unique form of convergent evolution within chordates. This opinion essay highlights emerging evidence that divergent secreted immune effectors with Ig-like domains evolved to manage immune recognition at mucosal surfaces in strikingly similar ways. This article is part of the theme issue ‘Sculpting the microbiome: how host factors determine and respond to microbial colonization’. 
    more » « less
  5. null (Ed.)
    One of the challenges of exploiting extracellular vesicles (EVs) as a disease biomarker is to differentiate EVs released by similar cell types or phenotypes. This paper reports a high-throughput and label-free EV microarray technology to differentiate EVs by simultaneous characterization of a panel of EV membrane proteins. The EsupplV microarray platform, which consists of an array of antibodies printed on a photonic crystal biosensor and a microscopic hyperspectral imaging technique, can rapidly assess the binding of the EV membrane proteins with their corresponding antibodies. The EV microarray assay requires only a 2 μL sample volume and a detection time of less than 2 h. The EV microarray assay was validated by not only quantifying seven membrane proteins carried by macrophage-derived EVs but also distinguishing the EVs secreted by three macrophage phenotypes. In particular, the EV microarray technology can generate a molecular fingerprint of target EVs that can be used to identify the EVs' parental cells, and thus has utility for basic science research as well as for point-of-care disease diagnostics and therapeutics. 
    more » « less