skip to main content

Title: Localization using a Particle Filter and Magnetic Induction Transmissions: Theory and Experiments in Air
Localization is a key ability for robot navigation and collision avoidance. The advent of technologies such as GPS have led to many improvements in terrestrial navigation. Unfortunately traditional electromagnetic (EM) communications propagate poorly through lossy media such as underwater and underground. Therefore, localization remains a challenging problem in such environments, necessitating other approaches such as acoustics and magnetic induction (MI). This paper investigates estimating the relative location of a pair of MI triaxial coil antennas in air, as a preliminary step to underwater applications. By measuring the voltages induced in the receiving antenna when the transmitting antenna's coils are turned on sequentially, the distance between the antennas can be computed. Then, with knowledge of the current velocities of the antennas, we can apply a particle filter to generate an estimate of the location of the transmitting antenna with respect to the receiving one. The theory is supported by simulations and later verified through a series of experiments.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
2020 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)
Page Range or eLocation-ID:
1 to 6
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper designs a novel geometry-conformal antenna for Magnetic Induction (MI)-based subsea wireless communications for autonomous underwater vehicles (AUV). The designed tri-directional antennas can be wrapped directly on the surface of AUVs, such that the AUVs fluid dynamics are well maintained to ensure power efficiency of the vehicles. In addition, ferrite materials are added between the MI antenna and the metallic body surface of the AUVs to overcome the shielding effect and enhance the MI signal strength. The designed MI communication system is implemented in hardware and the effectiveness of the geometry-conformal MI antenna is demonstrated through COMSOL simulations and lab experiments.
  2. In the next wave of swarm-based applications, unmanned aerial vehicles (UAVs) need to communicate with peer drones in any direction of a three-dimensional (3D) space. On a given drone and across drones, various antenna positions and orientations are possible. We know that, in free space, high levels of signal loss are expected if the transmitting and receiving antennas are cross polarized. However, increasing the reflective and scattering objects in the channel between a transmitter and receiver can cause the received polarization to become completely independent from the transmitted polarization, making the cross-polarization of antennas insignificant. Usually, these effects are studied in the context of cellular and terrestrial networks and have not been analyzed when those objects are the actual bodies of the communicating drones that can take different relative directions or move at various elevations. In this work, we show that the body of the drone can affect the received power across various antenna orientations and positions and act as a local scatterer that increases channel depolarization, reducing the cross-polarization discrimination (XPD). To investigate these effects, we perform experimentation that is staged in terms of complexity from a controlled environment of an anechoic chamber with and without drone bodies tomore »in-field environments where drone-mounted antennas are in-flight with various orientations and relative positions with the following outcomes: (i.) drone relative direction can significantly impact the XPD values, (ii.) elevation angle is a critical factor in 3D link performance, (iii.) antenna spacing requirements are altered for co-located cross-polarized antennas, and (iv.) cross-polarized antenna setups more than double spectral efficiency. Our results can serve as a guide for accurately simulating and modeling UAV networks and drone swarms.« less
  3. We present Fabriccio, a touchless gesture sensing technique developed for interactive fabrics using Doppler motion sensing. Our prototype was developed using a pair of loop antennas (one for transmitting and the other for receiving), made of conductive thread that was sewn onto a fabric substrate. The antenna type, configuration, transmission lines, and operating frequency were carefully chosen to balance the complexity of the fabrication process and the sensitivity of our system for touchless hand gestures, performed at a 10 cm distance. Through a ten-participant study, we evaluated the performance of our proposed sensing technique across 11 touchless gestures as well as 1 touch gesture. The study result yielded a 92.8% cross-validation accuracy and 85.2% leave-one-session-out accuracy. We conclude by presenting several applications to demonstrate the unique interactions enabled by our technique on soft objects.
  4. Full-duplex (FD) communication in many-antenna base stations (BSs) is hampered by self-interference (SI). This is because a FD node’s transmitting signal generates significant interference to its own receiver. Recent works have shown that it is possible to reduce/eliminate this SI in fully digital many-antenna systems, e.g., through transmit beamforming by using some spatial degrees of freedom to reduce SI instead of increasing the beamforming gain. On a parallel front, hybrid beamforming has recently emerged as a radio architecture that uses multiple antennas per FR chain. This can significantly reduce the cost of the end device (e.g., BS) but may also reduce the capacity or SI reduction gains of a fully digital radio system. This is because a fully digital radio architecture can change both the amplitude and phase of the wireless signal and send different data streams from each antenna element. Our goal in this paper is to quantify the performance gap between these two radio architectures in terms of SI cancellation and system capacity, particularly in multi-user MIMO setups. To do so, we experimentally compare the performance of a state-of-the-art fully digital many antenna FD solution to a hybrid beamforming architecture and compare the corresponding performance metrics leveraging amore »fully programmable many-antenna testbed and collecting over-the-air wireless channel data. We show that SI cancellation through beam design on a hybrid beamforming radio architecture can achieve capacity within 16% of that of a fully digital architecture. The performance gap further shrinks with a higher number of quantization bits in the hybrid beamforming system.« less
  5. For the diagnosis and treatment of various chronic neurological diseases such as Epilepsy, Seizure and, chronic pain, a long-term electrophysiological recording and stimulation are required for the patients. This type of study can be done through implantable neuromodulation devices. One of the key challenges in designing such implantable medical devices is the size restriction. Even the antennas transmitting the recorded signals must be small, miniaturized, and light-weight in order for the small animals used in the clinical studies to carry it easily. In this paper, two 15mm×15mm antennas are designed which have ultra-wide bandwidths making them suitable for the high data rate electrophysiological recording applications. The proposed antennas are bidirectional and small in size making them suitable to be added to the headstage based electrophysiological recording devices. Both antennas have a similar radiating patches with each ground patch modified by creating two different slots. A comparison of the proposed antenna is presented in the paper where both antennas operate within 4.7 GHz to 8.3 GHz and having average gain above 4.35 dBi. Though the proposed antennas are 40% smaller in size, they have 6% higher gain compared to the state of the arts.