Several studies have shown that underrepresented minorities (URM) (African Americans, Native Americans, Pacific Islanders, and Latinos) are more likely to drop out of engineering doctorate programs before graduation compared to international and majority students. In addition, transitioning into the doctoral programs without having a good understanding of what it entails can make the PhD experience difficult. To address this issue, a team of researchers from four US universities developed a project called “the Rising Doctoral Institute (RDI)’’. One of the research goals of this project is to better understand how factors in the academic system interact dynamically to influence (i.e., support or hinder) incoming URM students’ access, success, persistence, and retention in engineering doctoral programs. To accomplish this goal, we will use a comprehensive analysis approach known as System Dynamic Model (SDM). This work-In-Progress article represents the starting point to develop this model and its overall goal is to conduct a systematic literature review to identify the factors in the academic system that impact URM students’ experience in doctoral engineering programs. We followed a process suggested by Okoli and Schabram [1] which consists of four major steps. The first step is presenting the purpose of the literature review, protocol, and training. The second step consists of selecting the literature and practical screen. The next step is the quality appraisal and data extraction. Finally, the analysis of findings and writing the review. By identifying the factors and the relation between them, we could help ensure a more diverse and equitable STEM education. Although some external factors can affect students’ access, success, persistence and retention in engineering PhD programs, this study is limited to exploring the factors and interactions within the academic system that can potentially impact the successful experience of underrepresented minorities in PhD programs in engineering such as Advisor-Advisee Relationship, Student’s Experience, Academic Support and Faculty-Students Interaction
more »
« less
Finding a Fit: Biological Science Doctoral Students’ Selection of a Principal Investigator and Research Laboratory
In the laboratory-based disciplines, selection of a principal investigator (PI) and research laboratory (lab) indelibly shapes doctoral students’ experiences and educational outcomes. Framed by the theoretical concept of person–environment fit from within a socialization model, we use an inductive, qualitative approach to explore how a sample of 42 early-stage doctoral students enrolled in biological sciences programs made decisions about fitting with a PI and within a lab. Results illuminated a complex array of factors that students considered in selecting a PI, including PI relationship, mentoring style, and professional stability. Further, with regard to students’ lab selection, peers and research projects played an important role. Students actively conceptualized trade-offs among various dimensions of fit. Our findings also revealed cases in which students did not secure a position in their first (or second) choice labs and had to consider their potential fit with suboptimal placements (in terms of their initial assessments). Thus, these students weighted different factors of fit against the reality of needing to secure financial support to continue in their doctoral programs. We conclude by presenting and framing implications for students, PIs, and doctoral programs, and recommend providing transparency and candor around the PI and lab selection processes.
more »
« less
- Award ID(s):
- 1760894
- PAR ID:
- 10219865
- Editor(s):
- Long, Tammy
- Date Published:
- Journal Name:
- CBE—Life Sciences Education
- Volume:
- 19
- Issue:
- 3
- ISSN:
- 1931-7913
- Page Range / eLocation ID:
- ar31
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The doctoral advisor—typically the principal investigator (PI)—is often characterized as a singular or primary mentor who guides students using a cognitive apprenticeship model. Alternatively, the “cascading mentorship” model describes the members of laboratories or research groups receiving mentorship from more senior laboratory members and providing it to more junior members (i.e., PIs mentor postdocs, postdocs mentor senior graduate students, senior students mentor junior students, etc.). Here we show that PIs’ laboratory and mentoring activities do not significantly predict students’ skill development trajectories, but the engagement of postdocs and senior graduate students in laboratory interactions do. We found that the cascading mentorship model accounts best for doctoral student skill development in a longitudinal study of 336 PhD students in the United States. Specifically, when postdocs and senior doctoral students actively participate in laboratory discussions, junior PhD students are over 4 times as likely to have positive skill development trajectories. Thus, postdocs disproportionately enhance the doctoral training enterprise, despite typically having no formal mentorship role. These findings also illustrate both the importance and the feasibility of identifying evidence-based practices in graduate education.more » « less
-
Undergraduate instructional biology laboratories are typically taught within two paradigms. Some labs focus on protocols and techniques delivered in “cookbook” format with defined experimental outcomes. There is increasing momentum to alternatively employ student-driven, open-ended, and discovery-based strategies, oftenviacourse-based undergraduate research experiences (CUREs) using crowd-sourcing initiatives. A fraction of students also participate in funded research in faculty research labs, where they have opportunities to work on projects designed to expand the frontiers of human knowledge. These experiences are widely recognized as valuable but are not scalable, as most institutions have many more undergraduates than research lab positions. We sought to address this gap through our department’s curriculum by creating an opportunity for students to participate in the real-world research process within a laboratory course. We conceived, developed, and delivered an authentic, guided research experience to students in an upper-level molecular biology laboratory course. We refer to this model as a “research program-linked CURE.” The research questions come directly from a faculty member’s research lab and evolve along with that research program. Students study post-transcriptional regulation in mycobacteria. We use current molecular biology methodologies to test hypotheses like “UTRs affect RNA and protein expression levels,” “there is functional redundancy among RNA helicases,” and “carbon starvation alters mRNA 5′ end chemistries.” We conducted standard assessments and developed a customized “Skills and Concepts Inventory” survey to gauge how well the course met our student learning outcomes. We report the results of our assessments and describe challenges addressed during development and execution of the course, including organizing activities to fit within an instructional lab, balancing breadth with depth, and maintaining authenticity while giving students the experience of obtaining interpretable and novel results. Our data suggest student learning was enhanced through this truly authentic research approach. Further, students were able to perceive they were participants and contributors within an active research paradigm. Students reported increases in their self-identification as scientists, and a positive impact on their career trajectories. An additional benefit was reciprocation back to the funded research laboratory, by funneling course alumni, results, materials, and protocols.more » « less
-
This research full paper explores interview data with N=36 engineering graduate students to understand the factors and characteristics of graduate socialization, with the effort of better preparing students to succeed in doctoral programs. This research is motivated by the alarming fact that nearly one-third of engineering doctoral students will not finish their PhD programs; however, little research has been conducted on the various factors that can lead to attrition or enhance persistence in graduate engineering programs. This paper presents the results from the interview phase of a larger study investigating doctoral engineering socialization, attrition, persistence, and career trajectories. The participants for this study come from large research-intensive universities across the United States, and were sampled for maximum variation in a number of different categories, including stage in their doctoral program, gender, and race. Upon collecting and analyzing interview data from our participants through constant comparative and content analysis methods, several themes arose including concerns for mental health in engineering graduate students and uncertainties with joining the culture of academia in their future careers. Further, although the participants for this study are currently graduate students who anticipate completing their PhDs, nearly half of the participants discussed strongly considered leaving at some point. This study adds to the body of literature surrounding engineering attrition and the underlying issues driving engineering PhDs away from academic engineering careers.more » « less
-
null (Ed.)Purpose This study aims to examine how science, technology, engineering, and mathematics doctoral students interact with postdocs within the research laboratory, identifying the nature and potential impacts of student–postdoc mentoring relationships. Design/methodology/approach Using a sample of 53 doctoral students in the biological sciences, this study uses a sequential mixed-methods design. More specifically, a phenomenological approach enabled the authors to identify how doctoral students make meaning of their interactions with postdocs and other research staff. Descriptive statistics are used to examine how emergent themes might differ as a product of gender and race/ethnicity and the extent to which emergent themes may relate to key doctoral student socialization outcomes. Findings This study reveals six emergent themes, which primarily focus on how doctoral students receive instrumental and psychosocial support from postdocs in their labs. The most frequent emergent theme captures the unique ways in which postdocs provide ongoing, hands-on support and troubleshooting at the lab bench. When examining how this theme plays a role in socialization outcomes, the results suggest that doctoral students who described this type of support from postdocs had more positive mental health outcomes than those who did not describe this type of hands-on support. Originality/value Literature on graduate student mentorship has focused primarily on the impact of advisors, despite recent empirical evidence of a “cascading mentorship” model, in which senior students and staff also play a key mentoring role. This study provides new insights into the unique mentoring role of postdocs, focusing on the nature and potential impacts of student–postdoc interactions.more » « less