An optimal control problem is considered for a stochastic differential equation containing a state-dependent regime switching, with a recursive cost functional. Due to the non-exponential discounting in the cost functional, the problem is time-inconsistent in general. Therefore, instead of finding a global optimal control (which is not possible), we look for a time-consistent (approximately) locally optimal equilibrium strategy. Such a strategy can be represented through the solution to a system of partial differential equations, called an equilibrium Hamilton–Jacob–Bellman (HJB) equation which is constructed via a sequence of multi-person differential games. A verification theorem is proved and, under proper conditions, the well-posedness of the equilibrium HJB equation is established as well.
more »
« less
Time-inconsistent stochastic optimal control problems and backward stochastic volterra integral equations
An optimal control problem is considered for a stochastic differential equation with the cost functional determined by a backward stochastic Volterra integral equation (BSVIE, for short). This kind of cost functional can cover the general discounting (including exponential and non-exponential) situations with a recursive feature. It is known that such a problem is time-inconsistent in general. Therefore, instead of finding a global optimal control, we look for a time-consistent locally near optimal equilibrium strategy. With the idea of multi-person differential games, a family of approximate equilibrium strategies is constructed associated with partitions of the time intervals. By sending the mesh size of the time interval partition to zero, an equilibrium Hamilton–Jacobi–Bellman (HJB, for short) equation is derived, through which the equilibrium value function and an equilibrium strategy are obtained. Under certain conditions, a verification theorem is proved and the well-posedness of the equilibrium HJB is established. As a sort of Feynman–Kac formula for the equilibrium HJB equation, a new class of BSVIEs (containing the diagonal value Z ( r , r ) of Z (⋅ , ⋅)) is naturally introduced and the well-posedness of such kind of equations is briefly presented.
more »
« less
- Award ID(s):
- 1812921
- PAR ID:
- 10220031
- Editor(s):
- Buttazzo, G.; Casas, E.; de Teresa, L.; Glowinski, R.; Leugering, G.; Trélat, E.; Zhang, X.
- Date Published:
- Journal Name:
- ESAIM: Control, Optimisation and Calculus of Variations
- Volume:
- 27
- ISSN:
- 1292-8119
- Page Range / eLocation ID:
- 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Linear quadratic stochastic optimal control problems with operator coefficients: open-loop solutionsAn optimal control problem is considered for linear stochastic differential equations with quadratic cost functional. The coefficients of the state equation and the weights in the cost functional are bounded operators on the spaces of square integrable random variables. The main motivation of our study is linear quadratic (LQ, for short) optimal control problems for mean-field stochastic differential equations. Open-loop solvability of the problem is characterized as the solvability of a system of linear coupled forward-backward stochastic differential equations (FBSDE, for short) with operator coefficients, together with a convexity condition for the cost functional. Under proper conditions, the well-posedness of such an FBSDE, which leads to the existence of an open-loop optimal control, is established. Finally, as applications of our main results, a general mean-field LQ control problem and a concrete mean-variance portfolio selection problem in the open-loop case are solved.more » « less
-
null (Ed.)This paper studies an optimal stochastic impulse control problem in a finite time horizon with a decision lag, by which we mean that after an impulse is made, a fixed number units of time has to be elapsed before the next impulse is allowed to be made. The continuity of the value function is proved. A suitable version of dynamic programming principle is established, which takes into account the dependence of state process on the elapsed time. The corresponding Hamilton-Jacobi-Bellman (HJB) equation is derived, which exhibits some special feature of the problem. The value function of this optimal impulse control problem is characterized as the unique viscosity solution to the corresponding HJB equation. An optimal impulse control is constructed provided the value function is given. Moreover, a limiting case with the waiting time approaching 0 is discussed.more » « less
-
We present a neural network approach for approximating the value function of high- dimensional stochastic control problems. Our training process simultaneously updates our value function estimate and identifies the part of the state space likely to be visited by optimal trajectories. Our approach leverages insights from optimal control theory and the fundamental relation between semi-linear parabolic partial differential equations and forward-backward stochastic differential equations. To focus the sampling on relevant states during neural network training, we use the stochastic Pontryagin maximum principle (PMP) to obtain the optimal controls for the current value function estimate. By design, our approach coincides with the method of characteristics for the non-viscous Hamilton-Jacobi-Bellman equation arising in deterministic control problems. Our training loss consists of a weighted sum of the objective functional of the control problem and penalty terms that enforce the HJB equations along the sampled trajectories. Importantly, training is unsupervised in that it does not require solutions of the control problem. Our numerical experiments highlight our scheme’s ability to identify the relevant parts of the state space and produce meaningful value estimates. Using a two-dimensional model problem, we demonstrate the importance of the stochastic PMP to inform the sampling and compare to a finite element approach. With a nonlinear control affine quadcopter example, we illustrate that our approach can handle complicated dynamics. For a 100-dimensional benchmark problem, we demonstrate that our approach improves accuracy and time-to-solution and, via a modification, we show the wider applicability of our scheme.more » « less
-
We develop a new dynamic continuous-time model of optimal consumption and investment to include independent stochastic labor income. We reduce the problem of solving the Bellman equation to a problem of solving an integral equation. We then explicitly characterize the optimal consumption and investment strategy as a function of income-to-wealth ratio. We provide some analytical comparative statics associated with the value function and optimal strategies. We also develop a quite general numerical algorithm for control iteration and solve the Bellman equation as a sequence of solutions to ordinary differential equations. This numerical algorithm can be readily applied to many other optimal consumption and investment problems especially with extra nondiversifiable Brownian risks, resulting in nonlinear Bellman equations. Finally, our numerical analysis illustrates how the presence of stochastic labor income affects the optimal consumption and investment strategy. Funding: A. Bensoussan was supported by the National Science Foundation under grant [DMS-2204795]. S. Park was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea, South Korea [NRF-2022S1A3A2A02089950].more » « less
An official website of the United States government

