skip to main content

Search for: All records

Award ID contains: 1812921

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Forward-backward stochastic differential equation (FBSDE) systems were introduced as a probabilistic description for parabolic type partial differential equations. Although the probabilistic behavior of the FBSDE system makes it a natural mathematical model in many applications, the stochastic integrals contained in the system generate uncertainties in the solutions which makes the solution estimation a challenging task. In this paper, we assume that we could receive partial noisy observations on the solutions and introduce an optimal filtering method to make a data informed solution estimation for FBSDEs.
  2. This paper studies an optimal stochastic impulse control problem in a finite time horizon with a decision lag, by which we mean that after an impulse is made, a fixed number units of time has to be elapsed before the next impulse is allowed to be made. The continuity of the value function is proved. A suitable version of dynamic programming principle is established, which takes into account the dependence of state process on the elapsed time. The corresponding Hamilton-Jacobi-Bellman (HJB) equation is derived, which exhibits some special feature of the problem. The value function of this optimal impulse controlmore »problem is characterized as the unique viscosity solution to the corresponding HJB equation. An optimal impulse control is constructed provided the value function is given. Moreover, a limiting case with the waiting time approaching 0 is discussed.« less
  3. Buttazzo, G. ; Casas, E. ; de Teresa, L. ; Glowinski, R. ; Leugering, G. ; Trélat, E. ; Zhang, X. (Ed.)
    An optimal control problem is considered for a stochastic differential equation with the cost functional determined by a backward stochastic Volterra integral equation (BSVIE, for short). This kind of cost functional can cover the general discounting (including exponential and non-exponential) situations with a recursive feature. It is known that such a problem is time-inconsistent in general. Therefore, instead of finding a global optimal control, we look for a time-consistent locally near optimal equilibrium strategy. With the idea of multi-person differential games, a family of approximate equilibrium strategies is constructed associated with partitions of the time intervals. By sending the meshmore »size of the time interval partition to zero, an equilibrium Hamilton–Jacobi–Bellman (HJB, for short) equation is derived, through which the equilibrium value function and an equilibrium strategy are obtained. Under certain conditions, a verification theorem is proved and the well-posedness of the equilibrium HJB is established. As a sort of Feynman–Kac formula for the equilibrium HJB equation, a new class of BSVIEs (containing the diagonal value Z ( r , r ) of Z (⋅ , ⋅)) is naturally introduced and the well-posedness of such kind of equations is briefly presented.« less