skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experiences Building an Answer Bot for Gitter
Software developers use modern chat platforms to communicate about the status of a project and to coordinate development and release efforts, among other things. Developers also use chat platforms to ask technical questions to other developers. While some questions are project-specific and require an experienced developer familiar with the system to answer, many questions are rather general and may have been already answered by other developers on platforms such as the Q&A site StackOverflow. In this paper, we present GitterAns, a bot that can automatically detect when a developer asks a technical question in a chat and leverages the information present in Q&A forums to provide the developer with possible answers to their question. The results of a preliminary study indicate promising results, with GitterAns achieving an accuracy of 0.78 in identifying technical questions.  more » « less
Award ID(s):
1846142
PAR ID:
10220040
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops
Page Range / eLocation ID:
66 to 70
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Virtual conversational assistants designed specifically for software engineers could have a huge impact on the time it takes for software engineers to get help. Research efforts are focusing on virtual assistants that support specific software development tasks such as bug repair and pair programming. In this paper, we study the use of online chat platforms as a resource towards collecting developer opinions that could potentially help in building opinion Q&A systems, as a specialized instance of virtual assistants and chatbots for software engineers. Opinion Q&A has a stronger presence in chats than in other developer communications, thus mining them can provide a valuable resource for developers in quickly getting insight about a specific development topic (e.g., What is the best Java library for parsing JSON?). We address the problem of opinion Q&A extraction by developing automatic identification of opinion-asking questions and extraction of participants’ answers from public online developer chats. We evaluate our automatic approaches on chats spanning six programming communities and two platforms. Our results show that a heuristic approach to opinion-asking questions works well (.87 precision), and a deep learning approach customized to the software domain outperforms heuristics-based, machine-learning-based and deep learning for answer extraction in community question answering. 
    more » « less
  2. More than ever, developers are participating in public chat communities to ask and answer software development questions. With over ten million daily active users, Slack is one of the most popular chat platforms, hosting many active channels focused on software development technologies, e.g., python, react. Prior studies have shown that public Slack chat transcripts contain valuable information, which could provide support for improving automatic software maintenance tools or help researchers understand developer struggles or concerns. In this paper, we present a dataset of software-related Q&A chat conversations, curated for two years from three open Slack communities (python, clojure, elm). Our dataset consists of 38,955 conversations, 437,893 utterances, contributed by 12,171 users. We also share the code for a customized machine-learning based algorithm that automatically extracts (or disentangles) conversations from the downloaded chat transcripts. 
    more » « less
  3. Modern software development communities are increasingly social. Popular chat platforms such as Slack host public chat communities that focus on specific development topics such as Python or Ruby-on-Rails. Conversations in these public chats often follow a Q&A format, with someone seeking information and others providing answers in chat form. In this paper, we describe an exploratory study into the potential usefulness and challenges of mining developer Q&A conversations for supporting software maintenance and evolution tools. We designed the study to investigate the availability of information that has been successfully mined from other developer communications, particularly Stack Overflow. We also analyze characteristics of chat conversations that might inhibit accurate automated analysis. Our results indicate the prevalence of useful information, including API mentions and code snippets with descriptions, and several hurdles that need to be overcome to automate mining that information. 
    more » « less
  4. Modern software development communities are increasingly social. Popular chat platforms such as Slack host public chat communities that focus on specific development topics such as Python or Ruby-on-Rails. Conversations in these public chats often follow a Q&A format, with someone seeking information and others providing answers in chat form. In this paper, we describe an exploratory study into the potential usefulness and challenges of mining developer Q&A conversations for supporting software maintenance and evolution tools. We designed the study to investigate the availability of information that has been successfully mined from other developer communications, particularly Stack Overflow. We also analyze characteristics of chat conversations that might inhibit accurate automated analysis. Our results indicate the prevalence of useful information, including API mentions and code snippets with descriptions, and several hurdles that need to be overcome to automate mining that information. 
    more » « less
  5. More than ever, developers are participating in public chat communities to ask and answer software development questions. With over ten million daily active users, Slack is one of the most popular chat platforms, hosting many active channels focused on software development technologies, e.g., python, react. Prior studies have shown that public Slack chat transcripts contain valuable information, which could provide support for improving automatic software maintenance tools or help researchers understand developer struggles or concerns. In this paper, we present a dataset of software-related chat conversations, curated for two years from three open Slack communities (python, clojure, elm). Our dataset consists of 38,955 conversations, 437,893 utterances, contributed by 12,171 users. We also share the code for a customized machine-learning based algorithm that automatically extracts (or disentangles) conversations from the downloaded chat transcripts. 
    more » « less