The physical picture of interacting magnetic islands provides a useful paradigm for certain plasma dynamics in a variety of physical environments, such as the solar corona, the heliosheath and the Earth's magnetosphere. In this work, we derive an island kinetic equation to describe the evolution of the island distribution function (in area and in flux of islands) subject to a collisional integral designed to account for the role of magnetic reconnection during island mergers. This equation is used to study the inverse transfer of magnetic energy through the coalescence of magnetic islands in two dimensions. We solve our island kinetic equation numerically for three different types of initial distribution: Dirac delta, Gaussian and power-law distributions. The time evolution of several key quantities is found to agree well with our analytical predictions: magnetic energy decays as $$\tilde {t}^{-1}$$ , the number of islands decreases as $$\tilde {t}^{-1}$$ and the averaged area of islands grows as $$\tilde {t}$$ , where $$\tilde {t}$$ is the time normalised to the characteristic reconnection time scale of islands. General properties of the distribution function and the magnetic energy spectrum are also studied. Finally, we discuss the underlying connection of our island-merger models to the (self-similar) decay of magnetohydrodynamic turbulence.
more »
« less
Multi-scale dynamics of magnetic flux tubes and inverse magnetic energy transfer
We report on an analytical and numerical study of the dynamics of a three-dimensional array of identical magnetic flux tubes in the reduced-magnetohydrodynamic description of the plasma. We propose that the long-time evolution of this system is dictated by flux-tube mergers, and that such mergers are dynamically constrained by the conservation of the pertinent (ideal) invariants, viz. the magnetic potential and axial fluxes of each tube. We also propose that in the direction perpendicular to the merging plane, flux tubes evolve in a critically balanced fashion. These notions allow us to construct an analytical model for how quantities such as the magnetic energy and the energy-containing scale evolve as functions of time. Of particular importance is the conclusion that, like its two-dimensional counterpart, this system exhibits an inverse transfer of magnetic energy that terminates only at the system scale. We perform direct numerical simulations that confirm these predictions and reveal other interesting aspects of the evolution of the system. We find, for example, that the early time evolution is characterized by a sharp decay of the initial magnetic energy, which we attribute to the ubiquitous formation of current sheets. We also show that a quantitatively similar inverse transfer of magnetic energy is observed when the initial condition is a random, small-scale magnetic seed field.
more »
« less
- Award ID(s):
- 1654168
- PAR ID:
- 10220047
- Date Published:
- Journal Name:
- Journal of Plasma Physics
- Volume:
- 86
- Issue:
- 4
- ISSN:
- 0022-3778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract It has been recently shown numerically that there exists an inverse transfer of magnetic energy in decaying, nonhelical, magnetically dominated, magnetohydrodynamic turbulence in 3-dimensions (3D). We suggest that magnetic reconnection is the underlying physical mechanism responsible for this inverse transfer. In the two-dimensional (2D) case, the inverse transfer is easily inferred to be due to smaller magnetic islands merging to form larger ones via reconnection. We find that the scaling behaviour is similar between the 2D and the 3D cases, i.e., the magnetic energy evolves as t−1, and the magnetic power spectrum follows a slope of k−2. We show that on normalizing time by the magnetic reconnection timescale, the evolution curves of the magnetic field in systems with different Lundquist numbers collapse onto one another. Furthermore, transfer function plots show signatures of magnetic reconnection driving the inverse transfer. We also discuss the conserved quantities in the system and show that the behaviour of these quantities is similar between the 2D and 3D simulations, thus making the case that the dynamics in 3D could be approximately explained by what we understand in 2D. Lastly, we also conduct simulations where the magnetic field is subdominant to the flow. Here, too, we find an inverse transfer of magnetic energy in 3D. In these simulations, the magnetic energy evolves as t−1.4 and, interestingly, a dynamo effect is observed.more » « less
-
Visco-resistive magnetohydrodynamic turbulence, driven by a two-dimensional unstable shear layer that is maintained by an imposed body force, is examined by decomposing it into dissipationless linear eigenmodes of the initial profiles. The down-gradient momentum flux, as expected, originates from the large-scale instability. However, continual up-gradient momentum transport by large-scale linearly stable but nonlinearly excited eigenmodes is identified, and found to nearly cancel the down-gradient transport by unstable modes. The stable modes effectuate this by depleting the large-scale turbulent fluctuations via energy transfer to the mean flow. This establishes a physical mechanism underlying the long-known observation that coherent vortices formed from nonlinear saturation of the instability reduce turbulent transport and fluctuations, as such vortices are composed of both the stable and unstable modes, which are nearly equal in their amplitudes. The impact of magnetic fields on the nonlinearly excited stable modes is then quantified. Even when imposing a strong magnetic field that almost completely suppresses the instability, the up-gradient transport by the stable modes is at least two-thirds of the down-gradient transport by the unstable modes, whereas for weaker fields, this fraction reaches up to 98% . These effects are persistent with variations in magnetic Prandtl number and forcing strength. Finally, continuum modes are shown to be energetically less important, but essential for capturing the magnetic fluctuations and Maxwell stress. A simple analytical scaling law is derived for their saturated turbulent amplitudes. It predicts the fall-off rate as the inverse of the Fourier wavenumber, a property which is confirmed in numerical simulations.more » « less
-
Abstract Inspired by observations of sunspots embedded in active regions, it is often assumed that large-scale, strong magnetic flux emerges from the Sun’s deep interior in the form of arched, cylindrical structures, colloquially known as flux tubes. Here, we continue to examine the different dynamics encountered when these structures are considered as concentrations in a volume-filling magnetic field rather than as isolated entities in a field-free background. Via 2.5D numerical simulations, we consider the buoyant rise of magnetic flux concentrations from a radiative zone through an overshooting convection zone that self-consistently (via magnetic pumping) arranges a volume-filling large-scale background field. This work extends earlier papers that considered the evolution of such structures in a purely adiabatic stratification with an assumed form of the background field. This earlier work established the existence of a bias that created an increased likelihood of the successful rise for magnetic structures with one (relative) orientation of twist and a decreased likelihood for the other. When applied to the solar context, this bias is commensurate with the solar hemispherical helicity rules (SHHRs). This paper establishes the robustness of this selection mechanism in a model incorporating a more realistic background state, consisting of overshooting convection and a turbulently pumped mean magnetic field. Ultimately, convection only weakly influences the selection mechanism, since it is enacted at the initiation of the rise, at the edge of the overshoot zone. Convection does however add another layer of statistical fluctuations to the bias, which we investigate in order to explain variations in the SHHRs.more » « less
-
Abstract The cores of pulsars are expected to become superconducting soon after birth. The transition to type-II superconductivity is associated with the bunching of magnetic field lines into discrete superconducting flux tubes which possess enormous tension. The coupling of the crust to the flux tubes implies the existence of huge tangential magnetic fields at the crust–core interface. We show that the transition to superconductivity triggers a highly nonlinear response in the Hall drift of the crustal magnetic field, an effect which was neglected in previous numerical modeling. We argue that at the time of the phase transition giant Hall waves are launched from the crust–core interface toward the surface. Our models show that if the crust contains a multipolar magnetic field ∼1013G, the amplitude of the Hall waves is ∼1015G. The elastic deformation of the lattice is included in our models, which allows us to track the time-dependent shear stresses everywhere in the crust. The simulations indicate that the Hall waves may be strong enough to break the crust, and could cause star quakes which trigger rotation glitches and changes in the radio pulse profile. The Hall waves also couple to slow magnetospheric changes, which cause anomalous braking indices. The emission of the giant Hall waves from the crust–core interface facilitates fast flux expulsion from the superconducting core, provided that the flux tubes in the core are themselves sufficiently mobile. For all of the flux tube mobility prescriptions implemented in this work, the core approaches the Meissner state withB= 0 at late times.more » « less
An official website of the United States government

