ABSTRACT The critical oxygen partial pressure (Pcrit), typically defined as the PO2 below which an animal's metabolic rate (MR) is unsustainable, is widely interpreted as a measure of hypoxia tolerance. Here, Pcrit is defined as the PO2 at which physiological oxygen supply (α0) reaches its maximum capacity (α; µmol O2 g−1 h−1 kPa−1). α is a species- and temperature-specific constant describing the oxygen dependency of the maximum metabolic rate (MMR=PO2×α) or, equivalently, the MR dependence of Pcrit (Pcrit=MR/α). We describe the α-method, in which the MR is monitored as oxygen declines and, for each measurement period, is divided by the corresponding PO2 to provide the concurrent oxygen supply (α0=MR/PO2). The highest α0 value (or, more conservatively, the mean of the three highest values) is designated as α. The same value of α is reached at Pcrit for any MR regardless of previous or subsequent metabolic activity. The MR need not be constant (regulated), standardized or exhibit a clear breakpoint at Pcrit for accurate determination of α. The α-method has several advantages over Pcrit determination and non-linear analyses, including: (1) less ambiguity and greater accuracy, (2) fewer constraints in respirometry methodology and analysis, and (3) greater predictive power and ecological and physiological insight. Across the species evaluated here, α values are correlated with MR, but not Pcrit. Rather than an index of hypoxia tolerance, Pcrit is a reflection of α, which evolves to support maximum energy demands and aerobic scope at the prevailing temperature and oxygen level.
more »
« less
Oxygen supply capacity in animals evolves to meet maximum demand at the current oxygen partial pressure regardless of size or temperature
The capacity to extract oxygen from the environment and transport it to respiring tissues in support of metabolic demand reportedly has implications for species’ thermal tolerance, body size, diversity and biogeography. Here, we derived a quantifiable linkage between maximum and basal metabolic rate and their oxygen, temperature and size dependencies. We show that, regardless of size or temperature, the physiological capacity for oxygen supply precisely matches the maximum evolved demand at the highest persistently available oxygen pressure and this is the critical PO2 for the maximum metabolic rate, Pcrit-max. For most terrestrial and shallow-living marine species, Pcrit-max is the current atmospheric pressure, 21 kPa. Any reduction in oxygen partial pressure from current values will result in a calculable decrement in maximum metabolic performance. However, oxygen supply capacity has evolved to match demand across temperatures and body sizes and so does not constrain thermal tolerance or cause the well-known reduction in mass-specific metabolic rate with increasing body mass. The critical oxygen pressure for resting metabolic rate, typically viewed as an indicator of hypoxia tolerance, is, instead, simply a rate-specific reflection of the oxygen supply capacity. A compensatory reduction in maintenance metabolic costs in warm-adapted species constrains factorial aerobic scope and the critical PO2 to a similar range, between ∼2 and 6, across each species’ natural temperature range. The simple new relationship described here redefines many important physiological concepts and alters their ecological interpretation.
more »
« less
- Award ID(s):
- 1459243
- PAR ID:
- 10220136
- Date Published:
- Journal Name:
- Journal of experimental biology
- Volume:
- 223
- ISSN:
- 0022-0949
- Page Range / eLocation ID:
- jeb210492
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The effects of regional variations in oxygen and temperature levels with depth were assessed for the metabolism and hypoxia tolerance of dominant euphausiid species. The physiological strategies employed by these species facilitate prediction of changing vertical distributions with expanding oxygen minimum zones and inform estimates of the contribution of vertically migrating species to biogeochemical cycles. The migrating species from the Eastern Tropical Pacific (ETP), Euphausia eximia and Nematoscelis gracilis, tolerate a Partial Pressure (PO2) of 0.8 kPa at 10 8C (15 mM O2) for at least 12 h without mortality, while the California Current species, Nematoscelis difficilis, is incapable of surviving even 2.4 kPa PO2 (32 mM O2) for more than 3 h at that temperature. Euphausia diomedeae from the Red Sea migrates into an intermediate oxygen minimum zone, but one in which the temperature at depth remains near 22 8C. Euphausia diomedeae survived 1.6 kPa PO2 (22 mM O2) at 228C for the duration of six hour respiration experiments. Critical oxygen partial pressures were estimated for each species, and, for E. eximia, measured via oxygen consumption (2.1 kPa, 10 8C, n¼2) and lactate accumulation (1.1 kPa, 10 8C). A primary mechanism facilitating low oxygen tolerance is an ability to dramatically reduce energy expenditure during daytime forays into low oxygen waters. The ETP and Red Sea species reduced aerobic metabolism by more than 50% during exposure to hypoxia. Anaerobic glycolytic energy production, as indicated by whole-animal lactate accumulation, contributed only modestly to the energy deficit. Thus, the total metabolic rate was suppressed by 49–64%. Metabolic suppression during diel migrations to depth reduces the metabolic contribution of these species to vertical carbon and nitrogen flux (i.e., the biological pump) by an equivalent amount. Growing evidence suggests that metabolic suppression is a widespread strategy among migrating zooplankton in oxygen minimum zones and may have important implications for the economy and ecology of the oceans. The interacting effects of oxygen and temperature on the metabolism of oceanic species facilitate predictions of changing vertical distribution with climate change.more » « less
-
null (Ed.)ABSTRACT The metabolic index concept combines metabolic data and known thermal sensitivities to estimate the factorial aerobic scope of animals in different habitats, which is valuable for understanding the metabolic demands that constrain species' geographical distributions. An important assumption of this concept is that the O2 supply capacity (which is equivalent to the rate of oxygen consumption divided by the environmental partial pressure of oxygen: ) is constant at O2 tensions above the critical O2 threshold (i.e. the where O2 uptake can no longer meet metabolic demand). This has led to the notion that hypoxia vulnerability is not a selected trait, but a by-product of selection on maximum metabolic rate. In this Commentary, we explore whether this fundamental assumption is supported among fishes. We provide evidence that O2 supply capacity is not constant in all fishes, with some species exhibiting an elevated O2 supply capacity in hypoxic environments. We further discuss the divergent selective pressures on hypoxia- and exercise-based cardiorespiratory adaptations in fishes, while also considering the implications of a hypoxia-optimized O2 supply capacity for the metabolic index concept.more » « less
-
Pawar, Samraat (Ed.)The minimum O2 needed to fuel the demand of aquatic animals is commonly observed to increase with temperature, driven by accelerating metabolism. However, recent measurements of critical O2 thresholds (“Pcrit”) reveal more complex patterns, including those with a minimum at an intermediate thermal “optimum”. To discern the prevalence, physiological drivers, and biogeographic manifestations of such curves, we analyze new experimental and biogeographic data using a general dynamic model of aquatic water breathers. The model simulates the transfer of oxygen from ambient water through a boundary layer and into animal tissues driven by temperature-dependent rates of metabolism, diffusive gas exchange, and ventilatory and circulatory systems with O2-protein binding. We find that a thermal optimum in Pcrit can arise even when all physiological rates increase steadily with temperature. This occurs when O2 supply at low temperatures is limited by a process that is more temperature sensitive than metabolism, but becomes limited by a less sensitive process at warmer temperatures. Analysis of published species respiratory traits suggests that this scenario is not uncommon in marine biota, with ventilation and circulation limiting supply under cold conditions and diffusion limiting supply at high temperatures. Using occurrence data, we show that species with these physiological traits inhabit lowest O2 waters near the optimal temperature for hypoxia tolerance and are restricted to higher O2 at temperatures above and below this optimum. Our results imply that hypoxia tolerance can decline under both cold and warm conditions and thus may influence both poleward and equatorward species range limits.more » « less
-
na (Ed.)ABSTRACT Oxygen availability is central to the energetic budget of aquatic animals and may vary naturally and/or in response to anthropogenic activities. Yet, we know little about how oxygen availability is linked to fundamental processes such as ion transport in aquatic insects. We hypothesized and observed that ion (22Na and 35SO4) uptake would be significantly decreased at O2 partial pressures below the mean critical level (Pcrit, 5.4 kPa) where metabolic rate (ṀO2) is compromised and ATP production is limited. However, we were surprised to observe marked reductions in ion uptake at oxygen partial pressures well above Pcrit, where ṀO2 was stable. For example, SO4 uptake decreased by 51% at 11.7 kPa and 82% at Pcrit (5.4 kPa) while Na uptake decreased by 19% at 11.7 kPa and 60% at Pcrit. Nymphs held for longer time periods at reduced PO2 exhibited stronger reductions in ion uptake rates. Fluids from whole-body homogenates exhibited a 29% decrease in osmolality in the most hypoxic condition. The differential expression of atypical guanylate cyclase (gcy-88e) in response to changing PO2 conditions provides evidence for its potential role as an oxygen sensor. Several ion transport genes (e.g. chloride channel and sodium-potassium ATPase) and hypoxia-associated genes (e.g. ldh and egl-9) were also impacted by decreased oxygen availability. Together, the results of our work suggest that N. triangulifer can sense decreased oxygen availability and perhaps conserves energy accordingly, even when ṀO2 is not impacted.more » « less