skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is hypoxia vulnerability in fishes a by-product of maximum metabolic rate?
ABSTRACT The metabolic index concept combines metabolic data and known thermal sensitivities to estimate the factorial aerobic scope of animals in different habitats, which is valuable for understanding the metabolic demands that constrain species' geographical distributions. An important assumption of this concept is that the O2 supply capacity (which is equivalent to the rate of oxygen consumption divided by the environmental partial pressure of oxygen: ) is constant at O2 tensions above the critical O2 threshold (i.e. the where O2 uptake can no longer meet metabolic demand). This has led to the notion that hypoxia vulnerability is not a selected trait, but a by-product of selection on maximum metabolic rate. In this Commentary, we explore whether this fundamental assumption is supported among fishes. We provide evidence that O2 supply capacity is not constant in all fishes, with some species exhibiting an elevated O2 supply capacity in hypoxic environments. We further discuss the divergent selective pressures on hypoxia- and exercise-based cardiorespiratory adaptations in fishes, while also considering the implications of a hypoxia-optimized O2 supply capacity for the metabolic index concept.  more » « less
Award ID(s):
2002549
PAR ID:
10279342
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
224
Issue:
13
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The critical oxygen partial pressure (Pcrit), typically defined as the PO2 below which an animal's metabolic rate (MR) is unsustainable, is widely interpreted as a measure of hypoxia tolerance. Here, Pcrit is defined as the PO2 at which physiological oxygen supply (α0) reaches its maximum capacity (α; µmol O2 g−1 h−1 kPa−1). α is a species- and temperature-specific constant describing the oxygen dependency of the maximum metabolic rate (MMR=PO2×α) or, equivalently, the MR dependence of Pcrit (Pcrit=MR/α). We describe the α-method, in which the MR is monitored as oxygen declines and, for each measurement period, is divided by the corresponding PO2 to provide the concurrent oxygen supply (α0=MR/PO2). The highest α0 value (or, more conservatively, the mean of the three highest values) is designated as α. The same value of α is reached at Pcrit for any MR regardless of previous or subsequent metabolic activity. The MR need not be constant (regulated), standardized or exhibit a clear breakpoint at Pcrit for accurate determination of α. The α-method has several advantages over Pcrit determination and non-linear analyses, including: (1) less ambiguity and greater accuracy, (2) fewer constraints in respirometry methodology and analysis, and (3) greater predictive power and ecological and physiological insight. Across the species evaluated here, α values are correlated with MR, but not Pcrit. Rather than an index of hypoxia tolerance, Pcrit is a reflection of α, which evolves to support maximum energy demands and aerobic scope at the prevailing temperature and oxygen level. 
    more » « less
  2. null (Ed.)
    The capacity to extract oxygen from the environment and transport it to respiring tissues in support of metabolic demand reportedly has implications for species’ thermal tolerance, body size, diversity and biogeography. Here, we derived a quantifiable linkage between maximum and basal metabolic rate and their oxygen, temperature and size dependencies. We show that, regardless of size or temperature, the physiological capacity for oxygen supply precisely matches the maximum evolved demand at the highest persistently available oxygen pressure and this is the critical PO2 for the maximum metabolic rate, Pcrit-max. For most terrestrial and shallow-living marine species, Pcrit-max is the current atmospheric pressure, 21 kPa. Any reduction in oxygen partial pressure from current values will result in a calculable decrement in maximum metabolic performance. However, oxygen supply capacity has evolved to match demand across temperatures and body sizes and so does not constrain thermal tolerance or cause the well-known reduction in mass-specific metabolic rate with increasing body mass. The critical oxygen pressure for resting metabolic rate, typically viewed as an indicator of hypoxia tolerance, is, instead, simply a rate-specific reflection of the oxygen supply capacity. A compensatory reduction in maintenance metabolic costs in warm-adapted species constrains factorial aerobic scope and the critical PO2 to a similar range, between ∼2 and 6, across each species’ natural temperature range. The simple new relationship described here redefines many important physiological concepts and alters their ecological interpretation. 
    more » « less
  3. ABSTRACT The gill is the primary site of ionoregulation and gas exchange in adult teleost fishes. However, those characteristics that benefit diffusive gas exchange (large, thin gills) may also enhance the passive equilibration of ions and water that threaten osmotic homeostasis. Our literature review revealed that gill surface area and thickness were similar in freshwater (FW) and seawater (SW) species; however, the diffusive oxygen (O2) conductance (Gd) of the gill was lower in FW species. While a lower Gd may reduce ion losses, it also limits O2 uptake capacity and possibly aerobic performance in situations of high O2 demand (e.g. exercise) or low O2 availability (e.g. environmental hypoxia). We also found that FW fishes had significantly higher haemoglobin (Hb)–O2 binding affinities than SW species, which will increase the O2 diffusion gradient across the gills. Therefore, we hypothesized that the higher Hb–O2 affinity of FW fishes compensates, in part, for their lower Gd. Using a combined literature review and modelling approach, our results show that a higher Hb–O2 affinity in FW fishes increases the flux of O2 across their low-Gd gills. In addition, FW and SW teleosts can achieve similar maximal rates of O2 consumption (ṀO2,max) and hypoxia tolerance (Pcrit) through different combinations of Hb–O2 affinity and Gd. Our combined data identified novel patterns in gill and Hb characteristics between FW and SW fishes and our modelling approach provides mechanistic insight into the relationship between aerobic performance and species distribution ranges, generating novel hypotheses at the intersection of cardiorespiratory and ionoregulatory fish physiology. 
    more » « less
  4. The effects of regional variations in oxygen and temperature levels with depth were assessed for the metabolism and hypoxia tolerance of dominant euphausiid species. The physiological strategies employed by these species facilitate prediction of changing vertical distributions with expanding oxygen minimum zones and inform estimates of the contribution of vertically migrating species to biogeochemical cycles. The migrating species from the Eastern Tropical Pacific (ETP), Euphausia eximia and Nematoscelis gracilis, tolerate a Partial Pressure (PO2) of 0.8 kPa at 10 8C (15 mM O2) for at least 12 h without mortality, while the California Current species, Nematoscelis difficilis, is incapable of surviving even 2.4 kPa PO2 (32 mM O2) for more than 3 h at that temperature. Euphausia diomedeae from the Red Sea migrates into an intermediate oxygen minimum zone, but one in which the temperature at depth remains near 22 8C. Euphausia diomedeae survived 1.6 kPa PO2 (22 mM O2) at 228C for the duration of six hour respiration experiments. Critical oxygen partial pressures were estimated for each species, and, for E. eximia, measured via oxygen consumption (2.1 kPa, 10 8C, n¼2) and lactate accumulation (1.1 kPa, 10 8C). A primary mechanism facilitating low oxygen tolerance is an ability to dramatically reduce energy expenditure during daytime forays into low oxygen waters. The ETP and Red Sea species reduced aerobic metabolism by more than 50% during exposure to hypoxia. Anaerobic glycolytic energy production, as indicated by whole-animal lactate accumulation, contributed only modestly to the energy deficit. Thus, the total metabolic rate was suppressed by 49–64%. Metabolic suppression during diel migrations to depth reduces the metabolic contribution of these species to vertical carbon and nitrogen flux (i.e., the biological pump) by an equivalent amount. Growing evidence suggests that metabolic suppression is a widespread strategy among migrating zooplankton in oxygen minimum zones and may have important implications for the economy and ecology of the oceans. The interacting effects of oxygen and temperature on the metabolism of oceanic species facilitate predictions of changing vertical distribution with climate change. 
    more » « less
  5. Abstract Alterations of marine species’ ranges with climate change are often attributed to oxygen limitation in warming oceans. Here we report unique metabolic temperature sensitivities for the myriad of vertically migrating oceanic species that daily cross depth-related gradients in temperature and oxygen. In these taxa, selection favours high metabolic activity for predator–prey interactions in warm shallow water and hypoxia tolerance in the cold at depth. These diverging selective pressures result in thermal insensitivity of oxygen supply capacity and enhanced thermal sensitivity of active metabolic rate. Aerobic scope is diminished in the cold, well beyond thermodynamic influences and regardless of ambient oxygen levels, explaining the native distributions of tropical migrators and their recent range expansions following warming events. Cold waters currently constitute an energetic barrier to latitudinal range expansion in vertical migrators. As warming due to climate change approaches, and eventually surpasses, temperatures seen during past warming events, this energetic barrier will be relieved. 
    more » « less