skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Who Uses Bots? A Statistical Analysis of Bot Usage in Moderation Teams
Adopting new technology is challenging for volunteer moderation teams of online communities. Challenges are aggravated when communities increase in size. In a prior qualitative study, Kiene et al. found evidence that moderator teams adapted to challenges by relying on their experience in other technological platforms to guide the creation and adoption of innovative custom moderation "bots." In this study, we test three hypotheses on the social correlates of user innovated bot usage drawn from a previous qualitative study. We find strong evidence of the proposed relationship between community size and the use of user innovated bots. Although previous work suggests that smaller teams of moderators will be more likely to use these bots and that users with experience moderating in the previous platform will be more likely to do so, we find little evidence in support of either proposition.  more » « less
Award ID(s):
1617129
PAR ID:
10220251
Author(s) / Creator(s):
;
Date Published:
Journal Name:
CHI EA '20: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bots have become critical for managing online communities on platforms, especially to match the increasing technical sophistication of online harms. However, community leaders often adoptthird-party bots, creating room for misalignment in their assumptions, expectations, and understandings (i.e., their technological frames) about them. On platforms where sharing bots can be extremely valuable, how community leaders can revise their frames about bots to more effectively adopt them is unclear. In this work, we conducted a qualitative interview study with 16 community leaders on Discord examining how they adopt third-party bots. We found that participants addressed challenges stemming from uncertainties about a bot's security, reliability, and fit through emergent social ecosystems. Formal and informal opportunities to discuss bots with others across communities enabled participants to revise their technological frames over time, closing gaps in bot-specific skills and knowledge. This social process of learning shifted participants' perspectives of the labor of bot adoption into something that was satisfying and fun, underscoring the value of collaborative and communal approaches to adopting bots. Finally, by shaping participants' mental models of the nature, value, and use of bots, social ecosystems also raise some practical tensions in how they support user creativity and customization in third-party bot use. Together, the social nature of adopting third-party bots in our interviews offers insight into how we can better support the sharing of valuable user-facing tools across online communities. 
    more » « less
  2. On October 27th, 2022, Elon Musk purchased Twitter, becoming its new CEO and firing many top executives in the process. Musk listed fewer restrictions on content moderation and removal of spam bots among his goals for the platform. Given findings of prior research on moderation and hate speech in online communities, the promise of less strict content moderation poses the concern that hate will rise on Twitter. We examine the levels of hate speech and prevalence of bots before and after Musk's acquisition of the platform. We find that hate speech rose dramatically upon Musk purchasing Twitter and the prevalence of most types of bots increased, while the prevalence of astroturf bots decreased. 
    more » « less
  3. Much of our modern digital infrastructure relies critically upon open sourced software. The communities responsible for building this cyberinfrastructure require maintenance and moderation, which is often supported by volunteer efforts. Moderation, as a non-technical form of labor, is a necessary but often overlooked task that maintainers undertake to sustain the community around an OSS project. This study examines the various structures and norms that support community moderation, describes the strategies moderators use to mitigate conflicts, and assesses how bots can play a role in assisting these processes. We interviewed 14 practitioners to uncover existing moderation practices and ways that automation can provide assistance. Our main contributions include a characterization of moderated content in OSS projects, moderation techniques, as well as perceptions of and recommendations for improving the automation of moderation tasks. We hope that these findings will inform the implementation of more effective moderation practices in open source communities. 
    more » « less
  4. Past work has explored various ways for online platforms to leverage crowd wisdom for misinformation detection and moderation. Yet, platforms often relegate governance to their communities, and limited research has been done from the perspective of these communities and their moderators. How is misinformation currently moderated in online communities that are heavily self-governed? What role does the crowd play in this process, and how can this process be improved? In this study, we answer these questions through semi-structured interviews with Reddit moderators. We focus on a case study of COVID-19 misinformation. First, our analysis identifies a general moderation workflow model encompassing various processes participants use for handling COVID-19 misinformation. Further, we show that the moderation workflow revolves around three elements: content facticity, user intent, and perceived harm. Next, our interviews reveal that Reddit moderators rely on two types of crowd wisdom for misinformation detection. Almost all participants are heavily reliant on reports from crowds of ordinary users to identify potential misinformation. A second crowd--participants' own moderation teams and expert moderators of other communities--provide support when participants encounter difficult, ambiguous cases. Finally, we use design probes to better understand how different types of crowd signals---from ordinary users and moderators---readily available on Reddit can assist moderators with identifying misinformation. We observe that nearly half of all participants preferred these cues over labels from expert fact-checkers because these cues can help them discern user intent. Additionally, a quarter of the participants distrust professional fact-checkers, raising important concerns about misinformation moderation. 
    more » « less
  5. Twitter bot detection is vital in combating misinformation and safeguarding the integrity of social media discourse. While malicious bots are becoming more and more sophisticated and personalized, standard bot detection approaches are still agnostic to social environments (henceforth, communities) the bots operate at. In this work, we introduce community-specific bot detection, estimating the percentage of bots given the context of a community. Our method{---}BotPercent{---}is an amalgamation of Twitter bot detection datasets and feature-, text-, and graph-based models, adjusted to a particular community on Twitter. We introduce an approach that performs confidence calibration across bot detection models, which addresses generalization issues in existing community-agnostic models targeting individual bots and leads to more accurate community-level bot estimations. Experiments demonstrate that BotPercent achieves state-of-the-art performance in community-level Twitter bot detection across both balanced and imbalanced class distribution settings, presenting a less biased estimator of Twitter bot populations within the communities we analyze. We then analyze bot rates in several Twitter groups, including users who engage with partisan news media, political communities in different countries, and more. Our results reveal that the presence of Twitter bots is not homogeneous, but exhibiting a spatial-temporal distribution with considerable heterogeneity that should be taken into account for content moderation and social media policy making. 
    more » « less