skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Private Testing of Distributions via Sample Permutations
Statistical tests are at the heart of many scientific tasks. To validate their hypothesis, researchers in medical and social sciences use individuals' data. The sensitivity of participants' data requires the design of statistical tests that ensure the privacy of the individuals in the most efficient way. In this paper, we use the framework of property testing to design algorithms to test the properties of the distribution that the data is drawn from with respect to differential privacy. In particular, we investigate testing two fundamental properties of distributions: (1) testing the equivalence of two distributions when we have unequal numbers of samples from the two distributions. (2) Testing independence of two random variables. In both cases, we show that our testers achieve near optimal sample complexity (up to logarithmic factors). Moreover, our dependence on the privacy parameter is an additive term, which indicates that differential privacy can be obtained in most regimes of parameters for free.  more » « less
Award ID(s):
1741137
PAR ID:
10220370
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Statistical tests are at the heart of many scientific tasks. To validate their hypothesis, researchers in medical and social sciences use individuals' data. The sensitivity of participants' data requires the design of statistical tests that ensure the privacy of the individuals in the most efficient way. In this paper, we use the framework of property testing to design algorithms to test the properties of the distribution that the data is drawn from with respect to differential privacy. In particular, we investigate testing two fundamental properties of distributions: (1) testing the equivalence of two distributions when we have unequal numbers of samples from the two distributions. (2) Testing independence of two random variables. In both cases, we show that our testers achieve near optimal sample complexity (up to logarithmic factors). Moreover, our dependence on the privacy parameter is an additive term, which indicates that differential privacy can be obtained in most regimes of parameters for free. 
    more » « less
  2. We study the fundamental problems of identity testing (goodness of fit), and closeness testing (two sample test) of distributions over k elements, under differential privacy. While the problems have a long history in statistics, finite sample bounds for these problems have only been established recently. In this work, we derive upper and lower bounds on the sample complexity of both the problems under (epsilon, delta)-differential privacy. We provide sample optimal algorithms for identity testing problem for all parameter ranges, and the first results for closeness testing. Our closeness testing bounds are optimal in the sparse regime where the number of samples is at most k. Our upper bounds are obtained by privatizing non-private estimators for these problems. The non-private estimators are chosen to have small sensitivity. We propose a general framework to establish lower bounds on the sample complexity of statistical tasks under differential privacy. We show a bound on di erentially private algorithms in terms of a coupling between the two hypothesis classes we aim to test. By carefully constructing chosen priors over the hypothesis classes, and using Le Cam’s two point theorem we provide a general mechanism for proving lower bounds. We believe that the framework can be used to obtain strong lower bounds for other statistical tasks under privacy. 
    more » « less
  3. Abstract In the past decade, differential privacy has seen remarkable success as a rigorous and practical formalization of data privacy. This privacy definition and its divergence based relaxations, however, have several acknowledged weaknesses, either in handling composition of private algorithms or in analysing important primitives like privacy amplification by subsampling. Inspired by the hypothesis testing formulation of privacy, this paper proposes a new relaxation of differential privacy, which we term ‘f-differential privacy’ (f-DP). This notion of privacy has a number of appealing properties and, in particular, avoids difficulties associated with divergence based relaxations. First, f-DP faithfully preserves the hypothesis testing interpretation of differential privacy, thereby making the privacy guarantees easily interpretable. In addition, f-DP allows for lossless reasoning about composition in an algebraic fashion. Moreover, we provide a powerful technique to import existing results proven for the original differential privacy definition to f-DP and, as an application of this technique, obtain a simple and easy-to-interpret theorem of privacy amplification by subsampling for f-DP. In addition to the above findings, we introduce a canonical single-parameter family of privacy notions within the f-DP class that is referred to as ‘Gaussian differential privacy’ (GDP), defined based on hypothesis testing of two shifted Gaussian distributions. GDP is the focal privacy definition among the family of f-DP guarantees due to a central limit theorem for differential privacy that we prove. More precisely, the privacy guarantees of any hypothesis testing based definition of privacy (including the original differential privacy definition) converges to GDP in the limit under composition. We also prove a Berry–Esseen style version of the central limit theorem, which gives a computationally inexpensive tool for tractably analysing the exact composition of private algorithms. Taken together, this collection of attractive properties render f-DP a mathematically coherent, analytically tractable and versatile framework for private data analysis. Finally, we demonstrate the use of the tools we develop by giving an improved analysis of the privacy guarantees of noisy stochastic gradient descent. 
    more » « less
  4. Differential privacy offers a formal framework for reasoning about the privacy and accuracy of computations on private data. It also offers a rich set of building blocks for constructing private data analyses. When carefully calibrated, these analyses simultaneously guarantee the privacy of the individuals contributing their data, and the accuracy of the data analysis results, inferring useful properties about the population. The compositional nature of differential privacy has motivated the design and implementation of several programming languages to ease the implementation of differentially private analyses. Even though these programming languages provide support for reasoning about privacy, most of them disregard reasoning about the accuracy of data analyses. To overcome this limitation, we present DPella, a programming framework providing data analysts with support for reasoning about privacy, accuracy, and their trade-offs. The distinguishing feature of DPella is a novel component that statically tracks the accuracy of different data analyses. To provide tight accuracy estimations, this component leverages taint analysis for automatically inferring statistical independence of the different noise quantities added for guaranteeing privacy. We evaluate our approach by implementing several classical queries from the literature and showing how data analysts can calibrate the privacy parameters to meet the accuracy requirements, and vice versa. 
    more » « less
  5. While standard statistical inference techniques and machine learning generalization bounds assume that tests are run on data selected independently of the hypotheses, practical data analysis and machine learning are usually iterative and adaptive processes where the same holdout data is often used for testing a sequence of hypotheses (or models), which may each depend on the outcome of the previous tests on the same data. In this work, we present RADABOUND a rigorous, efficient and practical procedure for controlling the generalization error when using a holdout sample for multiple adaptive testing. Our solution is based on a new application of the Rademacher Complexity generalization bounds, adapted to dependent tests. We demonstrate the statistical power and practicality of our method through extensive simulations and comparisons to alternative approaches. In particular, we show that our rigorous solution is a substantially more powerful and efficient than the differential privacy based approach proposed in Dwork et al. [1]-[3]. 
    more » « less