While it has long been recognized that Lagrangian drift at the ocean surface plays a critical role in the kinematics and dynamics of upper ocean processes, only recently has the contribution of wave breaking to this drift begun to be investigated through direct numerical simulations (Deike et al. , J. Fluid Mech. , vol. 829, 2017, pp. 364–391; Pizzo et al. , J. Phys. Oceanogr. , vol. 49(4), 2019, pp. 983–992). In this work, laboratory measurements of the surface Lagrangian transport due to focusing deep-water non-breaking and breaking waves are presented. It is found that wave breaking greatly enhances mass transport, compared to non-breaking focusing wave packets. These results are in agreement with the direct numerical simulations of Deike et al. ( J. Fluid Mech. , vol. 829, 2017, pp. 364–391), and the increased transport due to breaking agrees with their scaling argument. In particular, the transport at the surface scales with $$S$$ , the linear prediction of the maximum slope at focusing, while the surface transport due to non-breaking waves scales with $$S^{2}$$ , in agreement with the classical Stokes prediction.
more »
« less
Nonlinear travelling internal waves with piecewise-linear shear profiles
In this work, we study the nonlinear travelling waves in density stratified fluids with piecewise-linear shear currents. Beginning with the formulation of the water-wave problem due to Ablowitz et al. ( J. Fluid Mech. , vol. 562, 2006, pp. 313–343), we extend the work of Ashton & Fokas ( J. Fluid Mech. , vol. 689, 2011, pp. 129–148) and Haut & Ablowitz ( J. Fluid Mech. , vol. 631, 2009, pp. 375–396) to examine the interface between two fluids of differing densities and varying linear shear. We derive a systems of equations depending only on variables at the interface, and numerically solve for periodic travelling wave solutions using numerical continuation. Here, we consider only branches which bifurcate from solutions where there is no slip in the tangential velocity at the interface for the trivial flow. The spectral stability of these solutions is then determined using a numerical Fourier–Floquet technique. We find that the strength of the linear shear in each fluid impacts the stability of the corresponding travelling wave solutions. Specifically, opposing shears may amplify or suppress instabilities.
more »
« less
- Award ID(s):
- 1715039
- PAR ID:
- 10220371
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 856
- ISSN:
- 0022-1120
- Page Range / eLocation ID:
- 984 to 1013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the effect of constant-vorticity background shear on the properties of wavetrains in deep water. Using the methodology of Fokas ( A Unified Approach to Boundary Value Problems , 2008, SIAM), we derive a higher-order nonlinear Schrödinger equation in the presence of shear and surface tension. We show that the presence of shear induces a strong coupling between the carrier wave and the mean-surface displacement. The effects of the background shear on the modulational instability of plane waves is also studied, where it is shown that shear can suppress instability, although not for all carrier wavelengths in the presence of surface tension. These results expand upon the findings of Thomas et al. ( Phys. Fluids , vol. 24 (12), 2012, 127102). Using a modification of the generalized Lagrangian mean theory in Andrews & McIntyre ( J. Fluid Mech. , vol. 89, 1978, pp. 609–646) and approximate formulas for the velocity field in the fluid column, explicit, asymptotic approximations for the Lagrangian and Stokes drift velocities are obtained for plane-wave and Jacobi elliptic function solutions of the nonlinear Schrödinger equation. Numerical approximations to particle trajectories for these solutions are found and the Lagrangian and Stokes drift velocities corresponding to these numerical solutions corroborate the theoretical results. We show that background currents have significant effects on the mean transport properties of waves. In particular, certain combinations of background shear and carrier wave frequency lead to the disappearance of mean-surface mass transport. These results provide a possible explanation for the measurements reported in Smith ( J. Phys. Oceanogr. , vol. 36, 2006, pp. 1381–1402). Our results also provide further evidence of the viability of the modification of the Stokes drift velocity beyond the standard monochromatic approximation, such as recently proposed in Breivik et al. ( J. Phys. Oceanogr. , vol. 44, 2014, pp. 2433–2445) in order to obtain a closer match to a range of complex ocean wave spectra.more » « less
-
null (Ed.)We present the results of a combined experimental and theoretical investigation of the stability of rings of millimetric droplets bouncing on the surface of a vibrating liquid bath. As the bath's vibrational acceleration is increased progressively, droplet rings are found to destabilize into a rich variety of dynamical states including steady rotational motion, periodic radial or azimuthal oscillations and azimuthal travelling waves. The instability observed is dependent on the ring's initial radius and drop number, and whether the drops are bouncing in- or out-of-phase relative to their neighbours. As the vibrational acceleration is further increased, more exotic dynamics emerges, including quasi-periodic motion and rearrangement into regular polygonal structures. Linear stability analysis and simulation of the rings based on the theoretical model of Couchman et al. ( J. Fluid Mech. , vol. 871, 2019, pp. 212–243) largely reproduce the observed behaviour. We demonstrate that the wave amplitude beneath each drop has a significant influence on the stability of the multi-droplet structures: the system seeks to minimize the mean wave amplitude beneath the drops at impact. Our work provides insight into the complex interactions and collective motions that arise in bouncing-droplet aggregates.more » « less
-
We revisit the classical but as yet unresolved problem of predicting the strength of breaking 2-D and 3-D gravity water waves, as quantified by the amount of wave energy dissipated per breaking event. Following Duncan ( J. Fluid Mech. , vol. 126, 1983, pp. 507–520), the wave energy dissipation rate per unit length of breaking crest may be related to the fifth moment of the wave speed and the non-dimensional breaking strength parameter $$b$$ . We use a finite-volume Navier–Stokes solver with large-eddy simulation resolution and volume-of-fluid surface reconstruction (Derakhti & Kirby, J. Fluid Mech. , vol. 761, 2014 a , pp. 464–506; J. Fluid Mech. , vol. 790, 2016, pp. 553–581) to simulate nonlinear wave evolution, with a strong focus on breaking onset and postbreaking behaviour for representative cases of wave packets with breaking due to dispersive focusing and modulational instability. The present study uses these results to investigate the relationship between the breaking strength parameter $$b$$ and the breaking onset parameter $$B$$ proposed recently by Barthelemy et al. ( J. Fluid Mech. , vol. 841, 2018, pp. 463–488). The latter, formed from the local energy flux normalized by the local energy density and the local crest speed, simplifies, on the wave surface, to the ratio of fluid speed to crest speed. Following a wave crest, when $$B$$ exceeds a generic threshold value at the wave crest (Barthelemy et al. 2018), breaking is imminent. We find a robust relationship between the breaking strength parameter $$b$$ and the rate of change of breaking onset parameter $$\text{d}B/\text{d}t$$ at the wave crest, as it transitions through the generic breaking onset threshold ( $$B\sim 0.85$$ ), scaled by the local period of the breaking wave. This result significantly refines previous efforts to express $$b$$ in terms of a wave packet steepness parameter, which is difficult to define robustly and which does not provide a generically accurate forecast of the energy dissipated by breaking.more » « less
-
When a mixture of viscous oil and non-colloidal particles displaces air between two parallel plates, the shear-induced migration of particles leads to the gradual accumulation of particles on the advancing oil–air interface. This particle accumulation results in the fingering of an otherwise stable fluid–fluid interface. While previous works have focused on the resultant instability, one unexplored yet striking feature of the experiments is the self-similarity in the concentration profile of the accumulating particles. In this paper, we rationalise this self-similar behaviour by deriving a depth-averaged particle transport equation based on the suspension balance model, following the theoretical framework of Ramachandran ( J. Fluid Mech. , vol. 734, 2013, pp. 219–252). The solutions to the particle transport equation are shown to be self-similar with slight deviations, and in excellent agreement with experimental observations. Our results demonstrate that the combination of the shear-induced migration, the advancing fluid–fluid interface and Taylor dispersion yield the self-similar and gradual accumulation of particles.more » « less
An official website of the United States government

