skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-similarity in particle accumulation on the advancing meniscus
When a mixture of viscous oil and non-colloidal particles displaces air between two parallel plates, the shear-induced migration of particles leads to the gradual accumulation of particles on the advancing oil–air interface. This particle accumulation results in the fingering of an otherwise stable fluid–fluid interface. While previous works have focused on the resultant instability, one unexplored yet striking feature of the experiments is the self-similarity in the concentration profile of the accumulating particles. In this paper, we rationalise this self-similar behaviour by deriving a depth-averaged particle transport equation based on the suspension balance model, following the theoretical framework of Ramachandran ( J. Fluid Mech. , vol. 734, 2013, pp. 219–252). The solutions to the particle transport equation are shown to be self-similar with slight deviations, and in excellent agreement with experimental observations. Our results demonstrate that the combination of the shear-induced migration, the advancing fluid–fluid interface and Taylor dispersion yield the self-similar and gradual accumulation of particles.  more » « less
Award ID(s):
2003706 1846854
PAR ID:
10319751
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
925
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gallium-based liquid metals (LM) have surface tension an order of magnitude higher than water and break up into micro-droplets when mixed with other liquids. In contrast, silicone oil readily mixes into LM foams to create oil-in-LM emulsions with oil inclusions. Previously, the LM was foamed through rapid mixing in air for an extended duration (over 2 hours). This process first results in the internalization of oxide flakes that form at the air-liquid interface. Once a critical fraction of these randomly shaped solid flakes is reached, air bubbles internalize into the LM to create foams that can internalize secondary liquids. Here, we introduce an alternative oil-in-LM emulsion fabrication method that relies on the prior addition of SiO2 micro-particles into the LM before mixing it with the silicone oil. This particle-assisted emulsion formation process provides a higher control over the composition of the LM-particle mixture before oil addition, which we employ to systematically study the impact of particle characteristics and content on the emulsions' composition and properties. We demonstrate that the solid particle size (0.8 µm to 5 µm) and volume fraction (1% to 10%) have a negligible impact on the internalization of the oil inclusions. The inclusions are mostly spherical with diameters of 20 to 100 µm diameter and are internalized by forming new, rather than filling old, geometrical features. We also study the impact of the particle characteristics on the two key properties related to the functional application of the LM emulsions in the thermal management of microelectronics. In particular, we measure the impact of particles and silicone oil on the emulsion's thermal conductivity and its ability to prevent deleterious gallium-induced corrosion and embrittlement of contacting metal substrates. 
    more » « less
  2. Controlling the downhole pressure is an important parameter for successful and safe drilling operations. Several types of weighting agents (i.e., high-density particles), traditionally barite particles, are added to maintain the desired density of the drilling fluid (DF). The DF density is an important design parameter for preventing multiple drilling complications. These issues are caused by the settling of the dense particles, an undesired phenomenon also referred to as sagging. Therefore, there is a need to understand the settling characteristics of heavy particles in such scenarios. To this end, simultaneous measurements of liquid phase flow patterns and particle settling velocities have been conducted in a Taylor-Couette (TC) cell with a rotating inner cylinder and stationary outer cylinder separated by an annular gap of 9.0 mm. Liquid flow patterns and particle settling velocities have been measured using particle image velocimetry (PIV) and particle tracking velocimetry (PTV) techniques, respectively. Experiments have been performed by varying the rotational speed of the inner cylinder up to 200 rev/min, which is used in normal drilling operations. Spherical particles with diameters of 3.0 mm or 4.0 mm and densities between 1.2 g/cm3 and 3.95 g/cm3 were used. The liquid phases studied included deionized (DI) water and mineral oil, which are the basic components of a non-Newtonian DF with a shear-thinning viscosity. The DF is a mud-like emulsion of opaque appearance, which impedes the ability to observe the liquid flow field and particle settling in the TC cell. To address this issue, a solution of carboxymethyl cellulose (CMC) with a 6% weight concentration in DI water was used. This non-Newtonian solution displays shear-thinning rheological behavior and was used as a transparent alternative to the opaque DF. For water, PIV results have shown wavy vortex flow (WVF) to turbulent Taylor vortex flow (TTVF), which agrees with the flow patterns reported in the literature. For mineral oil, circular Couette flow (CCF) was observed at up to 100 rev/min and vortex formation at 200 rev/min. For CMC, no vortex formation was observed up to 200 rev/min, only CCF. The settling velocities for all particles in water matched with the particle settling velocities predicted using the Basset-Boussinesq-Oseen (BBO) equation of motion. For mineral oil and CMC, the results did not match well with the predicted settling velocities, especially for heavy particles due possibly to the radial particle migration and interactions with the outer cylinder wall. 
    more » « less
  3. null (Ed.)
    This study explores thermal convection in suspensions of neutrally buoyant, non-colloidal suspensions confined between horizontal plates. A constitutive diffusion equation is used to model the dynamics of the particles suspended in a viscous fluid and it is coupled with the flow equations. We employ a simple model that was proposed by Metzger, Rahli & Yin ( J. Fluid Mech. , vol. 724, 2013, pp. 527–552) for the effective thermal diffusivity of suspensions. This model considers the effect of shear-induced diffusion and gives the thermal diffusivity increasing linearly with the thermal Péclet number ( Pe ) and the particle volume fraction ( ϕ ). Both linear stability analysis and numerical simulation based on the mathematical models are performed for various bulk particle volume fractions $$({\phi _b})$$ ranging from 0 to 0.3. The critical Rayleigh number $$(R{a_c})$$ grows gradually by increasing $${\phi _b}$$ from the critical value $$(R{a_c} = 1708)$$ for a pure Newtonian fluid, while the critical wavenumber $$({k_c})$$ remains constant at 3.12. The transition from the conduction state of suspensions is subcritical, whereas it is supercritical for the convection in a pure Newtonian fluid $$({\phi _b} = 0)$$ . The heat transfer in moderately dense suspensions $$({\phi _b} = 0.2\text{--}0.3)$$ is significantly enhanced by convection rolls for small Rayleigh number ( Ra ) close to $$R{a_c}$$ . We also found a power-law increase of the Nusselt number ( Nu ) with Ra , namely, $$Nu\sim R{a^b}$$ for relatively large values of Ra where the scaling exponent b decreases with $${\phi _b}$$ . Finally, it turns out that the shear-induced migration of particles can modify the heat transfer. 
    more » « less
  4. This study discusses turbulent suspension flows of non-Brownian, non-colloidal, neutrally buoyant and rigid spherical particles in a Newtonian fluid over porous media with particles too large to penetrate and move through the porous layer. We consider suspension flows with the solid volume fraction $${{\varPhi _b}}$$ ranging from 0 to 0.2, and different wall permeabilities, while porosity is constant at 0.6. Direct numerical simulations with an immersed boundary method are employed to resolve the particles and flow phase, with the volume-averaged Navier–Stokes equations modelling the flow within the porous layer. The results show that in the presence of particles in the free-flow region, the mean velocity and the concentration profiles are altered with increasing porous layer permeability because of the variations in the slip velocity and wall-normal fluctuations at the suspension-porous interface. Furthermore, we show that variations in the stress condition at the interface significantly affect the particle near-wall dynamics and migration toward the channel core, thereby inducing large modulations of the overall flow drag. At the highest volume fraction investigated here, $${{\varPhi _b}}= 0.2$$ , the velocity fluctuations and the Reynolds shear stress are found to decrease, and the overall drag increases due to the increase in the particle-induced stresses. 
    more » « less
  5. Electron transport in complex fluids, biology, and soft matter is a valuable characteristic in processes ranging from redox reactions to electrochemical energy storage. These processes often employ conductor–insulator composites in which electron transport properties are fundamentally linked to the microstructure and dynamics of the conductive phase. While microstructure and dynamics are well recognized as key determinants of the electrical properties, a unified description of their effect has yet to be determined, especially under flowing conditions. In this work, the conductivity and shear viscosity are measured for conductive colloidal suspensions to build a unified description by exploiting both recent quantification of the effect of flow-induced dynamics on electron transport and well-established relationships between electrical properties, microstructure, and flow. These model suspensions consist of conductive carbon black (CB) particles dispersed in fluids of varying viscosities and dielectric constants. In a stable, well-characterized shear rate regime where all suspensions undergo self-similar agglomerate breakup, competing relationships between conductivity and shear rate were observed. To account for the role of variable agglomerate size, equivalent microstructural states were identified using a dimensionless fluid Mason number, Mn f , which allowed for isolation of the role of dynamics on the flow-induced electron transport rate. At equivalent microstructural states, shear-enhanced particle–particle collisions are found to dominate the electron transport rate. This work rationalizes seemingly contradictory experimental observations in literature concerning the shear-dependent electrical properties of CB suspensions and can be extended to other flowing composite systems. 
    more » « less