skip to main content


Title: Application of electrical resistivity to map the stratigraphy and salinity of fluvio-deltaic aquifers: case studies from Bangladesh reveal promises and pitfalls
Fluvio-deltaic aquifers are the primary source of drinking water for the people of Bangladesh. Such aquifers, which comprise the Ganges-Brahmaputra-Meghna Delta, are extremely hydrogeologically heterogeneous. Because of widespread groundwater quality issues in Bangladesh, it is crucial to know the hydrostratigraphic architecture and hydrochemistry of the aquifers as some units are contaminated whereas others are safe. Geophysical methods provide a potentially effective and non-invasive method for extensive characterization of these aquifers. This study applies and investigates the limitations of using electrical resistivity imaging (ERI) for mapping the hydrostratigraphy and salinity of an aquifer-aquitard system adjacent to the Meghna River. Some ER sections showed excellent correlation between resistivity and grain size. These suggest that ERI is a powerful tool for mapping internal aquifer architecture and their boundaries with finer-grained aquitards which clearly appear as low ER zones. However, in parts of some ER sections, variations in electrical properties were determined by porewater resistivity. In these cases, low ER was indicative of brine and did not indicate the presence of finer-grained materials such as silt or clay. Accordingly, the following hydrostratigraphic zones with different resistivities were detected: (1) aquifers saturated with fresh ground water, (2) a regional silt/clay aquitard, and (3) a deeper brine-saturated formation. In addition, shallow silt/clay pockets were detected close to the river and below the vadose zone. ERI is thus a promising technique for mapping aquifers versus aquitards. However, the observations are easily confounded by porewater salinity. In such cases, borehole information and groundwater salinity measurements are necessary for ground-truthing.  more » « less
Award ID(s):
1852652
NSF-PAR ID:
10220510
Author(s) / Creator(s):
Date Published:
Journal Name:
Ground water
ISSN:
1745-6584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sedimentary arsenic (As) in the shallow aquifers of Bangladesh is enriched in finer-grained de-posits rich in organic matter, clays, and iron (Fe)-oxides. In Bangladesh, sediment color is a use-ful indicator of pore-water As concentrations. The pore-waters of orange sediments are usually associated with lower As concentrations (<50 µg/L) owing to abundant Fe-oxides which sorb As. Using this color signal as a guide, spectroscopic measurements alongside thermal treatment have been extensively utilized for analyzing the properties of both Fe-oxides and clay minerals. This study uses Fourier transform infrared (FTIR) and diffuse reflectance (DR) measurements along with thermal treatment to evaluate the solid-phase associations of As from sediment col-lected along the Meghna River in Bangladesh. The samples analyzed in this study were chosen to represent the various lithologies present at the study site and included riverbank sands (1 m depth), silt (6 m depth), aquifer sand (23 m depth), and a clay aquitard (37 m depth). The concen-trations of sedimentary As and Fe were measured by X-Ray Fluorescence and the spectroscopic measurements were taken on the samples prior to the thermal treatment. For the thermal treat-ment, sediment samples were placed in a preheated furnace at 600C for 3 hours. The thermal treatment caused a deepening of reddish-brown hues in all samples, and the greatest change of color was observed in the finer-grained samples. The FTIR spectral analysis revealed that the clay minerals were composed primarily of illite, smectite, and kaolinite. The DR results indicat-ed that the majority of Fe in sands was present as goethite; however, in the clay and silt samples, Fe was incorporated into the structure of clay minerals as Fe(II). The amount of structural Fe(II) was strongly positively correlated with the sedimentary As concentrations, which were highest in the finer-grained samples. After thermal treatment, the concentrations of As in the finer-grained samples decreased by an average of 40% whereas the change in the As concentrations of the sand samples was negligible. These findings indicate that significant proportions of solid-phase As may be retained by OM and Fe(II)-bearing clay minerals. 
    more » « less
  2. Sedimentary arsenic (As) in the shallow aquifers of Bangladesh is enriched in finer-grained deposits that are rich in organic matter (OM), clays, and iron (Fe)-oxides. In Bangladesh, sediment color is a useful indicator of pore water As concentrations. The pore waters of orange sediments are usually associated with lower As concentrations (<50 µg/L) owing to abundant Fe-oxides which sorb As. Using this color signal as a guide, spectroscopic measurements alongside thermal treatment were extensively utilized for analyzing the properties of both Fe-oxides and clay minerals. This study uses Fourier transform infrared (FTIR) and diffuse reflectance (DR) measurements along with thermal treatment to evaluate the solid-phase associations of As from sediment collected along the Meghna River in Bangladesh. The samples analyzed in this study were chosen to represent the various lithologies present at the study site and included riverbank sands (1 m depth), silt (6 m depth), aquifer sand (23 m depth), and a clay aquitard (37 m depth). The concentrations of sedimentary As and Fe were measured by X-ray fluorescence, and the spectroscopic measurements were taken on the samples prior to the thermal treatment. For the thermal treatment, sediment samples were placed in a preheated furnace at 600 °C for 3 h. The thermal treatment caused a deepening of reddish-brown hues in all samples, and the greatest change in color was observed in the finer-grained samples. The FTIR spectral analysis revealed that the clay minerals were composed primarily of illite, smectite, and kaolinite. The DR results indicate that the majority of Fe in sands was present as goethite; however, in the clay and silt samples, Fe was incorporated into the structure of clay minerals as Fe(II). The amount of structural Fe(II) was strongly positively correlated with the sedimentary As concentrations, which were highest in the finer-grained samples. After thermal treatment, the concentrations of As in the finer-grained samples decreased by an average of 40%, whereas the change in the As concentrations of the sand samples was negligible. These findings indicate that significant proportions of solid-phase As may be retained by OM and Fe(II)-bearing clay minerals. 
    more » « less
  3. Abstract

    This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time‐lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6‐km long longitudinal ER surveys during summer and winter. The time‐lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel‐scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.

     
    more » « less
  4. Abstract

    Across South Asia, millions of villagers have reduced their exposure to high‐arsenic (As) groundwater by switching to low‐As wells. Isotopic tracers and flow modeling are used in this study to understand the groundwater flow system of a semi‐confined aquifer of Pleistocene (>10 kyr) age in Bangladesh that is generally low in As but has been perturbed by massive pumping at a distance of about 25 km for the municipal water supply of Dhaka. A 10‐ to 15‐m‐thick clay aquitard caps much of the intermediate aquifer (>40‐ to 90‐m depth) in the 3‐km2study area, with some interruptions by younger channel sand deposits indicative of river scouring. Hydraulic heads in the intermediate aquifer below the clay‐capped areas are 1–2 m lower than in the high‐As shallow aquifer above the clay layer. In contrast, similar heads in the shallow and intermediate aquifer are observed where the clay layer is missing. The head distribution suggests a pattern of downward flow through interruptions in the aquitard and lateral advection from the sandy areas to the confined portion of the aquifer. The interpreted flow system is consistent with3H‐3He ages, stable isotope data, and groundwater flow modeling. Lateral flow could explain an association of elevated As with high methane concentrations within layers of gray sand below certain clay‐capped portions of the Pleistocene aquifer. An influx of dissolved organic carbon from the clay layer itself leading to a reduction of initially orange sands has also likely contributed to the rise of As.

     
    more » « less
  5. Abstract

    Hyporheic exchange influences water quality and controls numerous physical, chemical, and biological processes. Despite its importance, hyporheic exchange and the associated dynamics of solute mixing are often difficult to characterize due to spatial (e.g., sedimentary heterogeneity) and temporal (e.g., river stage fluctuation) variabilities. This study coupled geophysical techniques with physical and chemical sediment analyses to map sedimentary architecture and quantify its influence on hyporheic exchange dynamics within a compound bar deposit in a gravel‐dominated river system in southwestern Ohio. Electromagnetic induction (EMI) was used to quantify variability in electrical conductivity within the compound bar. EMI informed locations of electrode placement for time‐lapse electrical resistivity imaging (ERI) surveys, which were used to examine changes in electrical resistivity driven by hyporheic exchange. Both geophysical methods revealed a zone of high electrical conductivity in the center of the bar, identified as a fine‐grained cross‐bar channel fill. The zone acts as a baffle to flow, evidenced by stable electrical conditions measured by time‐lapse ERI over the study period. Large changes in electrical resistivity throughout the survey period indicate preferential flowpaths through higher permeability sands and gravels. Grain size analyses confirmed sedimentological interpretations of geophysical data. Loss on ignition and x‐ray fluorescence identified zones with higher organic matter content that are locations for potentially enhanced geochemical activity within the cross‐bar channel fill. Differences in the physical and geochemical characteristics of cross‐bar channel fills play an important role in hyporheic flow dynamics and nutrient processing within riverbed sediments. These findings enhance our understanding of the applications of geophysical methods in mapping riverbed heterogeneity and highlight the importance of accurately representing geomorphologic features and heterogeneity when studying hyporheic exchange processes.

     
    more » « less