skip to main content


Title: Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen
The production of hydrogen fuels, via water splitting, is of practical relevance for meeting global energy needs and mitigating the environmental consequences of fossil-fuel-based transportation. Water photoelectrolysis has been proposed as a viable approach for generating hydrogen, provided that stable and inexpensive photocatalysts with conversion efficiencies over 10% can be discovered, synthesized at scale, and successfully deployed (Pinaud et al. , Energy Environ. Sci. , 2013, 6 , 1983). While a number of first-principles studies have focused on the data-driven discovery of photocatalysts, in the absence of systematic experimental validation, the success rate of these predictions may be limited. We address this problem by developing a screening procedure with co-validation between experiment and theory to expedite the synthesis, characterization, and testing of the computationally predicted, most desirable materials. Starting with 70 150 compounds in the Materials Project database, the proposed protocol yielded 71 candidate photocatalysts, 11 of which were synthesized as single-phase materials. Experiments confirmed hydrogen generation and favorable band alignment for 6 of the 11 compounds, with the most promising ones belonging to the families of alkali and alkaline-earth indates and orthoplumbates. This study shows the accuracy of a nonempirical, Hubbard-corrected density-functional theory method to predict band gaps and band offsets at a fraction of the computational cost of hybrid functionals, and outlines an effective strategy to identify photocatalysts for solar hydrogen generation.  more » « less
Award ID(s):
1851987 1729338
NSF-PAR ID:
10220552
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Energy & Environmental Science
ISSN:
1754-5692
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oxides of p-block metals (e.g., indium oxide) and semimetals (e.g., antimony oxide) are of broad practical interest as transparent conductors and light absorbers for solar photoconversion due to the tunability of their electronic conductivity and optical absorption. Comparatively, these oxides have found limited applications in solar-to-hydrogen photocatalysis primarily due to their high electronegativity, which impedes electron transfer for converting protons into molecular hydrogen. We have shown recently that inserting s-block metal cations into p-block oxides is effective at lowering electronegativities while affording further control of band gaps. Here, we explain the origins of this dual tunability by demonstrating the mediator role of s-block metal cations in modulating orbital hybridization while not contributing to frontier electronic states. From this result, we carry out a comprehensive computational study of 109 ternary oxides of s- and p-block metal elements as candidate photocatalysts for solar hydrogen generation. We downselect the most desirable materials using band gaps and band edges obtained from Hubbard-corrected density-functional theory with Hubbard parameters computed entirely from first principles, evaluate the stability of these oxides in aqueous conditions, and characterize experimentally four of the remaining materials, synthesized with high phase uniformity, to assess the accuracy of computational predictions. We thus propose seven oxide semiconductors, including CsIn3O5, Sr2In2O5, and KSbO2 which, to the extent of our literature review, have not been previously considered as water-splitting photocatalysts. 
    more » « less
  2. Abstract

    Data‐intensive discovery of water‐splitting catalysts can accelerate the development of sustainable energy technologies, such as the photocatalytic and/or electrocatalytic production of renewable hydrogen fuel. Through computational screening, 13 materials were recently predicted as potential water‐splitting photocatalysts: Cu3NbS4, CuYS2, SrCu2O2, CuGaO2, Na3BiO4,Sr2PbO4, LaCuOS, LaCuOSe, Na2TeO4, La4O4Se3, Cu2WS4, BaCu2O2, and CuAlO2. Herein, these materials are synthesized, their bandgaps and band alignments are experimentally determined, and their photoelectrocatalytic hydrogen evolution properties are assessed. Using cyclic voltammetry and chopped illumination experiments, 9 of the 13 materials are experimentally found to have bandgaps and band alignments that straddle the potentials required for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), as computationally predicted. During photocatalytic testing, 12 of the materials yield a measurable photocurrent. However, only three are found to be active for the HER, with Cu3NbS4, CuYS2, and Cu2WS4producing H2in amounts comparable to bare TiO2; a benchmark photocatalyst. This study provides experimental validation of computational bandgap and band alignment predictions while also successfully identifying active photocatalysts.

     
    more » « less
  3. Abstract

    The disproportionation of H2O into solar fuels H2and O2, or water splitting, is a promising strategy for clean energy harvesting and storage but requires the concerted action of absorption of photons, separation of excitons, charge diffusion to catalytic sites and catalysis of redox processes. It is increasingly evident that the rational design of photocatalysts for efficient water splitting must employ hybrid systems, where the different components perform light harvesting, charge separation and catalysis in tandem. In this topical review, we report on the recent development of a new class of hybrid photocatalysts that employs MxV2O5(M = p-block cation) nanowires in order to engineer efficient charge transfer from the photoactive chalcogenide quantum dots (QDs) to the water-splitting and hydrogen evolving catalysts. Herein, we summarize the oxygen-mediated lone pair mechanism used to modulate the energy level and orbital character of mid-gap states in the MxV2O5nanowires. The electronic structure of MxV2O5is discussed in terms of density functional theory and hard x-ray photoelectron spectroscopy (HAXPES) measurements. The principles of HAXPES are explained within the context of its unique sensitivity to metal 5(6)s orbitals and ability to non-destructively study buried interface alignments of quantum dot decorated nanowires i.e., MxV2O5/CdX (X = S, Se, Te). We illustrate with examples how the MxV2O5/CdX band alignments can be rationally engineered for ultra-fast charge-transfer of photogenerated holes from the quantum dot to the nanowires; thereby suppressing anodic photo-corrosion in the CdX QDs and enabling efficacious hydrogen evolution.

     
    more » « less
  4. Energy harvesting from solar and water has created ripples in materials energy research for the last several decades, complemented by the rise of Hydrogen as a clean fuel. Among these, water electrolysis leading to generation of oxygen and hydrogen, has been one of the most promising routes towards sustainable alternative energy generation and storage, with applications ranging from metal-​air batteries, fuel cells, to solar-​to-​fuel energy conversion systems. In fact, solar water splitting is one of the most promising method to produce Hydrogen without depleting fossil-​fuel based natural resources. However, the efficiency and practical feasibility of water electrolysis is limited by the anodic oxygen evolution reaction (OER)​, which is a kinetically sluggish, electron-​intensive uphill reaction. A slow OER process also slows the other half- cell reaction, i.e. the hydrogen evolution reaction (HER) at the cathode. Hence, designing efficient catalysts for OER process from earth-​abundant resources has been one of the primary concerns for advancing solar water splitting. In the Nath group we have focused on transition metal chalcogenides as efficient OER electrocatalysts. We have proposed the idea that these chalcogenides, specifically, selenides and tellurides will show much better OER catalytic activity due to increasing covalency around the catalytically active transition metal site, compared to the oxides caused by decreasing electronegativity of the anion, which in turn leads to variation of chem. potential around the transition metal center, [e.g. lowering the Ni 2+ -​-​> Ni 3+ oxidn. potential in Ni-​based catalysts where Ni 3+ is the actually catalytically active species]​. Based on such hypothesis, we have synthesized a plethora of transition metal selenides including those based on Ni, Ni-​Fe, Co, and Ni-​Co, which show high catalytic efficiency characterized by low onset potential and overpotential at 10 mA​/cm 2 [Ni 3 Se 2 - 200 - 290 mV; Co 7 Se 8 - 260 mV; FeNi 2 Se 4 -​NrGO - 170 mV (NrGO - N-​doped reduced graphene oxide)​; NiFe 2 Se 4 - 210 mV; CoNi 2 Se 4 - 190 mV; Ni 3 Te 2 - 180 mV]​. 
    more » « less
  5. We present a valence transition model for electron- and hole-doped cuprates, within which there occurs a discrete jump in ionicity Cu2+ -> Cu1+ in both families upon doping, at or near optimal doping in the conventionally prepared electron-doped compounds and at the pseudogap phase transition in the hole-doped materials. In thin films of the T' compounds, the valence transition has occurred already in the undoped state. The phenomenology of the valence transition is closely related to that of the neutral-to-ionic transition in mixed-stack organic charge-transfer solids. Doped cuprates have negative charge-transfer gaps, just as rare-earth nickelates and BaBiO3. The unusually high ionization energy of the closed shell Cu1+ ion, taken together with the dopingdriven reduction in three-dimensional Madelung energy and gain in two-dimensional delocalization energy in the negative charge transfer gap state drives the transition in the cuprates. The combined effects of strong correlations and small d-p electron hoppings ensure that the systems behave as effective 1/2-filled Cu band with the closed shell electronically inactive O2- ions in the undoped state, and as correlated two-dimensional geometrically frustrated 1/4-filled oxygen hole band, now with electronically inactive closed-shell Cu1+ ions, in the doped state. The model thus gives microscopic justification for the two-fluid models suggested by many authors. The theory gives the simplest yet most comprehensive understanding of experiments in the normal states. The robust commensurate antiferromagnetism in the conventional T' crystals, the strong role of oxygen deficiency in driving superconductivity and charge carrier sign corresponding to holes at optimal doping are all manifestations of the same quantum state. In the hole-doped pseudogapped state, there occurs a biaxial commensurate period 4 charge density wave state consisting of O1- -Cu l(1+)-O1- spin singlets that coexists with broken rotational C-4 symmetry due to intraunit cell oxygen inequivalence. Finite domains of this broken symmetry state will exhibit twodimensional chirality and the polar Kerr effect. Superconductivity within the model results from a destabilization of the 1/4-filled band paired Wigner crystal [Phys. Rev. B 93, 165110 (2016) and ihid. 93, 205111 (2016)]. We posit that a similar valence transition, Ir4+ -> Ir3+, occurs upon electron doping Sr2IrO4. We make testable experimental predictions in cuprates including superoxygenated La2CuO4+delta and iridates. Finally, as indirect evidence for the valence bond theory of superconductivity proposed here, we note that there exist an unusually large number of unconventional superconductors that exhibit superconductivity proximate to exotic charge ordered states, whose band fillings are universally 1/4 or 3/4, exactly where the paired Wigner crystal is most stable. 
    more » « less