skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Multigrid Method for Efficiently Training Video Models
Training competitive deep video models is an order of magnitude slower than training their counterpart image models. Slow training causes long research cycles, which hinders progress in video understanding research. Following standard practice for training image models, video model training has used a fixed mini-batch shape: a specific number of clips, frames, and spatial size. However, what is the optimal shape? High resolution models perform well, but train slowly. Low resolution models train faster, but are less accurate. Inspired by multigrid methods in numerical optimization, we propose to use variable mini-batch shapes with different spatial-temporal resolutions that are varied according to a schedule. The different shapes arise from resampling the training data on multiple sampling grids. Training is accelerated by scaling up the mini-batch size and learning rate when shrinking the other dimensions. We empirically demonstrate a general and robust grid schedule that yields a significant out-of-the-box training speedup without a loss in accuracy for different models (I3D, non-local, SlowFast), datasets (Kinetics, Something-Something, Charades), and training settings (with and without pre-training, 128 GPUs or 1 GPU). As an illustrative example, the proposed multigrid method trains a ResNet-50 SlowFast network 4.5 x faster (wall-clock time, same hardware) while also improving accuracy (+ 0.8% absolute) on Kinetics-400 compared to baseline training. Code is available online.  more » « less
Award ID(s):
1845485
PAR ID:
10220676
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Page Range / eLocation ID:
153-162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph Neural Networks (GNNs) have gained significant attention in recent years due to their ability to learn representations of graph-structured data. Two common methods for training GNNs are mini-batch training and full-graph training. Since these two methods require different training pipelines and systems optimizations, two separate classes of GNN training systems emerged, each tailored for one method. Works that introduce systems belonging to a particular category predominantly compare them with other systems within the same category, offering limited or no comparison with systems from the other category. Some prior work also justifies its focus on one specific training method by arguing that it achieves higher accuracy than the alternative. The literature, however, has incomplete and contradictory evidence in this regard. In this paper, we provide a comprehensive empirical comparison of representative full-graph and mini-batch GNN training systems. We find that the mini-batch training systems consistently converge faster than the full-graph training ones across multiple datasets, GNN models, and system configurations. We also find that minibatch training techniques converge to similar to or often higher accuracy values than full-graph training ones, showing that minibatch sampling is not necessarily detrimental to accuracy. Our work highlights the importance of comparing systems across different classes, using time-to-accuracy rather than epoch time for performance comparison, and selecting appropriate hyperparameters for each training method separately. 
    more » « less
  2. We present a new weakly supervised learning-based method for generating novel category-specific 3D shapes from unoccluded image collections. Our method is weakly supervised and only requires silhouette annotations from unoccluded, category-specific objects. Our method does not require access to the object's 3D shape, multiple observations per object from different views, intra-image pixel correspondences, or any view annotations. Key to our method is a novel multi-projection generative adversarial network (MP-GAN) that trains a 3D shape generator to be consistent with multiple 2D projections of the 3D shapes, and without direct access to these 3D shapes. This is achieved through multiple discriminators that encode the distribution of 2D projections of the 3D shapes seen from a different views. Additionally, to determine the view information for each silhouette image, we also train a view prediction network on visualizations of 3D shapes synthesized by the generator. We iteratively alternate between training the generator and training the view prediction network. We validate our multi-projection GAN on both synthetic and real image datasets. Furthermore, we also show that multi-projection GANs can aid in learning other high-dimensional distributions from lower dimensional training datasets, such as material-class specific spatially varying reflectance properties from images. 
    more » « less
  3. We propose ViC-MAE, a model that combines both Masked AutoEncoders (MAE) and contrastive learning. ViC-MAE is trained using a global representation obtained by pooling the local features learned under an MAE reconstruction loss and using this representation under a contrastive objective across images and video frames. We show that visual representations learned under ViC-MAE generalize well to video and image classification tasks. Particularly, ViC-MAE obtains state-of-the-art transfer learning performance from video to images on Imagenet-1k compared to the recently proposed OmniMAE by achieving a top-1 accuracy of 86% (+1.3% absolute improvement) when trained on the same data and 87.1% (+2.4% absolute improvement) when training on extra data. At the same time, ViC-MAE outperforms most other methods on video benchmarks by obtaining 75.9% top-1 accuracy on the challenging Something something-v2 video benchmark. When training on videos and images from diverse datasets, our method maintains a balanced transfer-learning performance between video and image classification benchmarks, coming only as a close second to the best-supervised method. 
    more » « less
  4. Prior works for reconstructing hand-held objects from a single image train models on images paired with 3D shapes. Such data is challenging to gather in the real world at scale. Consequently, these approaches do not generalize well when presented with novel objects in in-the-wild settings. While 3D supervision is a major bottleneck, there is an abundance of a) in-the-wild raw video data showing hand-object interactions and b) synthetic 3D shape collections. In this paper, we propose modules to leverage 3D supervision from these sources to scale up the learning of models for reconstructing hand-held objects. Specifically, we extract multiview 2D mask supervision from videos and 3D shape priors from shape collections. We use these indirect 3D cues to train occupancy networks that predict the 3D shape of objects from a single RGB image. Our experiments in the challenging object generalization setting on in-the-wild MOW dataset show 11.6% relative improvement over models trained with 3D supervision on existing datasets. 
    more » « less
  5. Prior works for reconstructing hand-held objects from a single image train models on images paired with 3D shapes. Such data is challenging to gather in the real world at scale. Consequently, these approaches do not generalize well when presented with novel objects in in-the-wild settings. While 3D supervision is a major bottleneck, there is an abundance of a) in-the-wild raw video data showing hand-object interactions and b) synthetic 3D shape collections. In this paper, we propose modules to leverage 3D supervision from these sources to scale up the learning of models for reconstructing hand-held objects. Specifically, we extract multiview 2D mask supervision from videos and 3D shape priors from shape collections. We use these indirect 3D cues to train occupancy networks that predict the 3D shape of objects from a single RGB image. Our experiments in the challenging object generalization setting on in-the-wild MOW dataset show 11.6% relative improvement over models trained with 3D supervision on existing datasets. 
    more » « less