Title: On the spectrum problem for some digraphs of order 4 and size 6
Consider the multigraph obtained by adding a double edge to $$K_4-e$$. Now, let $$D$$ be a directed graph obtained by orientating the edges of that multigraph. We establish necessary and sufficient conditions on $$n$$ for the existence of a $$(K^{*}_{n},D)$$-design for four such orientations. more »« less
Genova, Daniela; Hoogeboom, Hendrik Jan; Jonoska, Nataša
(, Fundamenta Informaticae)
ter Beek, Maurice; Koutny, Maciej; Rozenberg, Grzegorz
(Ed.)
For a family of sets we consider elements that belong to the same sets within the family as companions. The global dynamics of a reactions system (as introduced by Ehrenfeucht and Rozenberg) can be represented by a directed graph, called a transition graph, which is uniquely determined by a one-out subgraph, called the 0-context graph. We consider the companion classes of the outsets of a transition graph and introduce a directed multigraph, called an essential motion, whose vertices are such companion classes. We show that all one-out graphs obtained from an essential motion represent 0-context graphs of reactions systems with isomorphic transition graphs. All such 0-context graphs are obtained from one another by swapping the outgoing edges of companion vertices.
Jeronimo, Fernando Granha
(, Leibniz international proceedings in informatics)
Braverman, Mark
(Ed.)
For an abelian group H acting on the set [𝓁], an (H,𝓁)-lift of a graph G₀ is a graph obtained by replacing each vertex by 𝓁 copies, and each edge by a matching corresponding to the action of an element of H. Expanding graphs obtained via abelian lifts, form a key ingredient in the recent breakthrough constructions of quantum LDPC codes, (implicitly) in the fiber bundle codes by Hastings, Haah and O'Donnell [STOC 2021] achieving distance Ω̃(N^{3/5}), and in those by Panteleev and Kalachev [IEEE Trans. Inf. Theory 2021] of distance Ω(N/log(N)). However, both these constructions are non-explicit. In particular, the latter relies on a randomized construction of expander graphs via abelian lifts by Agarwal et al. [SIAM J. Discrete Math 2019]. In this work, we show the following explicit constructions of expanders obtained via abelian lifts. For every (transitive) abelian group H ⩽ Sym(𝓁), constant degree d ≥ 3 and ε > 0, we construct explicit d-regular expander graphs G obtained from an (H,𝓁)-lift of a (suitable) base n-vertex expander G₀ with the following parameters: ii) λ(G) ≤ 2√{d-1} + ε, for any lift size 𝓁 ≤ 2^{n^{δ}} where δ = δ(d,ε), iii) λ(G) ≤ ε ⋅ d, for any lift size 𝓁 ≤ 2^{n^{δ₀}} for a fixed δ₀ > 0, when d ≥ d₀(ε), or iv) λ(G) ≤ Õ(√d), for lift size "exactly" 𝓁 = 2^{Θ(n)}. As corollaries, we obtain explicit quantum lifted product codes of Panteleev and Kalachev of almost linear distance (and also in a wide range of parameters) and explicit classical quasi-cyclic LDPC codes with wide range of circulant sizes. Items (i) and (ii) above are obtained by extending the techniques of Mohanty, O'Donnell and Paredes [STOC 2020] for 2-lifts to much larger abelian lift sizes (as a byproduct simplifying their construction). This is done by providing a new encoding of special walks arising in the trace power method, carefully "compressing" depth-first search traversals. Result (iii) is via a simpler proof of Agarwal et al. [SIAM J. Discrete Math 2019] at the expense of polylog factors in the expansion.
Chan, Timothy M.
(, Proc. 39th Sympos. Computational Geometry (SoCG))
Chambers, Erin W.; Gudmundsson, Joachim
(Ed.)
We present a (combinatorial) algorithm with running time close to O(n^d) for computing the minimum directed L_∞ Hausdorff distance between two sets of n points under translations in any constant dimension d. This substantially improves the best previous time bound near O(n^{5d/4}) by Chew, Dor, Efrat, and Kedem from more than twenty years ago. Our solution is obtained by a new generalization of Chan’s algorithm [FOCS'13] for Klee’s measure problem. To complement this algorithmic result, we also prove a nearly matching conditional lower bound close to Ω(n^d) for combinatorial algorithms, under the Combinatorial k-Clique Hypothesis.
Giombi, Simone; Hyman, Jonah
(, Journal of High Energy Physics)
A bstract We study operators in the rank- j totally symmetric representation of O ( N ) in the critical O ( N ) model in arbitrary dimension d , in the limit of large N and large charge j with j/N ≡ $$ \hat{j} $$ j ̂ fixed. The scaling dimensions of the operators in this limit may be obtained by a semiclassical saddle point calculation. Using the standard Hubbard-Stratonovich description of the critical O ( N ) model at large N , we solve the relevant saddle point equation and determine the scaling dimensions as a function of d and $$ \hat{j} $$ j ̂ , finding agreement with all existing results in various limits. In 4 < d < 6, we observe that the scaling dimension of the large charge operators becomes complex above a critical value of the ratio j/N , signaling an instability of the theory in that range of d . Finally, we also derive results for the correlation functions involving two “heavy” and one or two “light” operators. In particular, we determine the form of the “heavy-heavy-light” OPE coefficients as a function of the charges and d .
We give new quantum algorithms for evaluating composed functions whose inputs may be shared between bottom-level gates. Let f be an m -bit Boolean function and consider an n -bit function F obtained by applying f to conjunctions of possibly overlapping subsets of n variables. If f has quantum query complexity Q ( f ) , we give an algorithm for evaluating F using O ~ ( Q ( f ) ⋅ n ) quantum queries. This improves on the bound of O ( Q ( f ) ⋅ n ) that follows by treating each conjunction independently, and our bound is tight for worst-case choices of f . Using completely different techniques, we prove a similar tight composition theorem for the approximate degree of f .By recursively applying our composition theorems, we obtain a nearly optimal O ~ ( n 1 − 2 − d ) upper bound on the quantum query complexity and approximate degree of linear-size depth- d AC 0 circuits. As a consequence, such circuits can be PAC learned in subexponential time, even in the challenging agnostic setting. Prior to our work, a subexponential-time algorithm was not known even for linear-size depth-3 AC 0 circuits.As an additional consequence, we show that AC 0 ∘ ⊕ circuits of depth d + 1 require size Ω ~ ( n 1 / ( 1 − 2 − d ) ) ≥ ω ( n 1 + 2 − d ) to compute the Inner Product function even on average. The previous best size lower bound was Ω ( n 1 + 4 − ( d + 1 ) ) and only held in the worst case (Cheraghchi et al., JCSS 2018).
Bunge, R, El-Zanati, S, Hawken, K, Ramirez, E, Roberts, D, Rodriguez-Guzman, E, and Williams, J. On the spectrum problem for some digraphs of order 4 and size 6. Retrieved from https://par.nsf.gov/biblio/10220712. Journal of Combinatorial Mathematics and Combinatorial Computing (ISSN: 0835-3026) 114.
Bunge, R, El-Zanati, S, Hawken, K, Ramirez, E, Roberts, D, Rodriguez-Guzman, E, & Williams, J. On the spectrum problem for some digraphs of order 4 and size 6. Journal of Combinatorial Mathematics and Combinatorial Computing (ISSN: 0835-3026), 114 (). Retrieved from https://par.nsf.gov/biblio/10220712.
Bunge, R, El-Zanati, S, Hawken, K, Ramirez, E, Roberts, D, Rodriguez-Guzman, E, and Williams, J.
"On the spectrum problem for some digraphs of order 4 and size 6". Journal of Combinatorial Mathematics and Combinatorial Computing (ISSN: 0835-3026) 114 (). Country unknown/Code not available. https://par.nsf.gov/biblio/10220712.
@article{osti_10220712,
place = {Country unknown/Code not available},
title = {On the spectrum problem for some digraphs of order 4 and size 6},
url = {https://par.nsf.gov/biblio/10220712},
abstractNote = {Consider the multigraph obtained by adding a double edge to $K_4-e$. Now, let $D$ be a directed graph obtained by orientating the edges of that multigraph. We establish necessary and sufficient conditions on $n$ for the existence of a $(K^{*}_{n},D)$-design for four such orientations.},
journal = {Journal of Combinatorial Mathematics and Combinatorial Computing (ISSN: 0835-3026)},
volume = {114},
author = {Bunge, R and El-Zanati, S and Hawken, K and Ramirez, E and Roberts, D and Rodriguez-Guzman, E and Williams, J.},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.