skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Function‐Oriented and Modular (+/−)‐ cis ‐Pseudoguaianolide Synthesis: Discovery of New Nrf2 Activators and NF‐κB Inhibitors
Abstract Described herein is a function‐oriented synthesis route and biological evaluation of pseudoguaianolide analogues. The 10‐step synthetic route developed retains the topological complexity of the natural product, installs functional handles for late‐stage diversification, and forges the key bioactive Michael acceptors early in the synthesis. The analogues were found to be low‐micromolar Nrf2 activators and micromolar NF‐κB inhibitors and dependent on the local environment of the Michael acceptor moieties.  more » « less
Award ID(s):
1844443
PAR ID:
10220729
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
27
Issue:
17
ISSN:
0947-6539
Format(s):
Medium: X Size: p. 5564-5571
Size(s):
p. 5564-5571
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A strategy to control the diastereoselectivity of bond formation at a prochiral attached‐ring bridgehead is reported. An unusual stereodivergent Michael reaction relies on basic vs. Lewis acidic conditions and non‐covalent interactions to controlre‐ vs.si‐ facial selectivity en route to fully substituted attached‐rings. This divergency reflects differential engagement of one rotational isomer of the attached‐ring system. The successful synthesis of anerythrosubtarget diastereomer ultimately leads to a short formal synthesis of merrilactone A. 
    more » « less
  2. The photosynthetic tetrapyrroles share a common structural feature comprised of a β-ketoester motif embedded in an exocyclic ring (ring E). As part of a total synthesis program aimed at preparing native structures and analogues, 3-(3-methoxy-1,3-dioxopropyl)pyrrole was sought. The pyrrole is a precursor to analogues of ring C and the external framework of ring E. Four routes were developed. Routes 1–3 entail a Pd-mediated coupling process of a 3-iodopyrrole with potassium methyl malonate, whereas route 4 relies on electrophilic substitution of TIPS-pyrrole with methyl malonyl chloride. Together, the four routes afford considerable latitude. A long-term objective is to gain the capacity to create chlorophylls and bacteriochlorophylls and analogues thereof by facile de novo means for diverse studies across the photosynthetic sciences. 
    more » « less
  3. Abstract Neutral three‐coordinate iron alkylidenes of the form PN−Fe=CHR have been proposed as viable candidates for alkene metathesis. Indeed, during the final stages of preparing this current study, a separate report disclosed that dearomatized PN−Fe‐alkyl complexes are active precatalysts for ring‐opening metathesis polymerization (ROMP) of norbornene implicating PN−Fe=CHR species as possible intermediates. In yet another separate report, we prepared Zn analogues of PN−Fe‐alkyl complexes and herein provide an account for the synthesis, characterization, and reactivity of some new iron complexes with the sametBu substituted PN platform. 
    more » « less
  4. Abstract We report the synthesis, X‐ray crystal structure, and molecular recognition properties of pillar[n]arene derivativeP[6]AS, which we refer to as Pillar[6]MaxQ along with analoguesP[5]ASandP[7]AStoward guests1–18. The ultratight binding affinity ofP[5]ASandP[6]AStoward quaternary (di)ammonium ions renders them prime candidates for in vitro and in vivo non‐covalent bioconjugation, for imaging and delivery applications, and as in vivo sequestration agents. 
    more » « less
  5. A highly enantio- and diastereoselective method for the synthesis of functionalized chroman-2-ones and chromanes was achieved by using an organocatalytic domino Michael/hemiacetalization reaction of aliphatic aldehydes and ( E )-2-(2-nitrovinyl)phenols followed by a PCC oxidation and dehydroxylation, respectively. Using the modularly designed organocatalysts (MDOs) self-assembled from cinchona alkaloid derivatives and amino acids in the reaction media, the title products were obtained in good to high yields (up to 97%) and excellent diastereoselectivities (up to 99 : 1 dr) and enantioselectivities (up to 99% ee). 
    more » « less