skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Four Routes to 3-(3-Methoxy-1,3-dioxopropyl)pyrrole, a Core Motif of Rings C and E in Photosynthetic Tetrapyrroles
The photosynthetic tetrapyrroles share a common structural feature comprised of a β-ketoester motif embedded in an exocyclic ring (ring E). As part of a total synthesis program aimed at preparing native structures and analogues, 3-(3-methoxy-1,3-dioxopropyl)pyrrole was sought. The pyrrole is a precursor to analogues of ring C and the external framework of ring E. Four routes were developed. Routes 1–3 entail a Pd-mediated coupling process of a 3-iodopyrrole with potassium methyl malonate, whereas route 4 relies on electrophilic substitution of TIPS-pyrrole with methyl malonyl chloride. Together, the four routes afford considerable latitude. A long-term objective is to gain the capacity to create chlorophylls and bacteriochlorophylls and analogues thereof by facile de novo means for diverse studies across the photosynthetic sciences.  more » « less
Award ID(s):
2054497
PAR ID:
10520395
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Molecules
Date Published:
Journal Name:
Molecules
Volume:
28
Issue:
3
ISSN:
1420-3049
Page Range / eLocation ID:
1323
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Native chlorophylls and bacteriochlorophylls share a common trans-substituted pyrroline ring D (17-propionic acid, 18-methyl), whereas diversity occurs in ring A particularly at the 3-position. Two dihydrodipyrrins equipped with native-like D-ring substituents and tailorable A-ring substituents have been synthesized. The synthesis relies on a Schreiber-modified Nicholas reaction to construct the stereochemically defined precursor to ring D, a dialkyl-substituted pent-4-ynoic acid. The carboxylic acid group of the intact propionic acid proved unworkable, whereupon protected propionate (−CO2tBu) and several latent propyl ethers were examined. The tert-butyldiphenylsilyl-protected propanol substituent proved satisfactory for reaction of the chiral N-acylated oxazolidinone, affording (2S,3S)-2-(3-((tert-butyldiphenylsilyl)-oxy)propyl)-3-methylpent-4-ynoic acid in ∼30% yield over 8 steps. Two variants for ring A, 2-tert-butoxycarbonyl-3-Br/H-5-iodo-4- methylpyrrole, were prepared via the Barton−Zard route. Dihydrodipyrrin formation from the pyrrole and pentynoic acid entailed Jacobi Pd-mediated lactone formation, Petasis methenylation, and Paal−Knorr-type pyrroline formation. The two AD- dihydrodipyrrins bear the D-ring methyl and protected propanol groups with a stereochemical configuration identical to that of native (bacterio)chlorophylls, and a bromine or no substitution in ring A corresponding to the 3-position of (bacterio)chlorophylls. The analogous β-position of a lactone−pyrrole intermediate on the path to the dihydrodipyrrin also was successfully brominated, opening opportunities for late-stage diversification in the synthesis of (bacterio)chlorophylls. 
    more » « less
  2. null (Ed.)
    A route under development for the synthesis of bacteriochlorophyll a and analogues relies on joining an AD-dihydrodipyrrin (bearing a D-ring carboxaldehyde) and a BC-dihydrodipyrrin (bearing a C-ring β-ketoester group and a B-ring dimethoxymethyl group) via Knoevenagel condensation followed by double-ring closure (Nazarov cyclization, electrophilic aromatic substitution, and elimination of methanol). Prior synthetic studies afforded the bacteriochlorophyll skeleton containing a gem-dimethyl group in ring B, a trans -dialkyl group in ring D, and a carboethoxy group at the 3-position of ring A. To explore the incorporation of native substituents, the synthesis of two bacteriochlorophyll analogues thereof was pursued, one with 12-methyl and 3-carboethoxy groups and the other with 2,12-dimethyl and 3-acetyl groups. The 12-methyl group resulted in half the yield ( versus the unsubstituted analogue) in the Knoevenagel reaction, but insignificant effects in all other steps including the rate and yield of double-ring closure despite the known effects of alkyl groups to facilitate electrophilic substitution of pyrroles. The 2-methyl-3-acetyl group, however, resulted in diminished yields in several steps, including the Knoevenagel reaction, but not the double-ring closure. The results point to obstacles and openings on the path to total syntheses of the native pigments. 
    more » « less
  3. null (Ed.)
    A long-term goal is to gain synthetic access to native photosynthetic bacteriochlorophylls. A recently developed route entails Knoevenagel condensation of an AD dihydrodipyrrin ( I , bearing a carboxaldehyde attached to pyrroline ring D) and a BC dihydrodipyrrin ( II , bearing a β-ketoester attached to pyrrole ring C) to form the Z / E -enone. Acid-mediated double-ring closure of the E -enone III-E (Nazarov cyclization, electrophilic aromatic substitution, and elimination of methanol) affords the bacteriochlorophyll skeleton BC-1 containing the isocyclic ring (ring E), a trans -dialkyl group in ring D, and a gem-dimethyl group in ring B. Prior work established the synthesis and the integrity of the resulting trans -dialkyl groups and bacteriochlorin chromophore. The counterpart report here concerns an in-depth study of conditions for the double-ring closure: catalyst/solvent surveys; grid search including time courses of [ III-E ] versus [acid] concentrations emphasizing equimolar, inverse molar, and variable acid lines of inquiry; and chlorin byproduct quantitation. Key findings are that (1) the double-ring closure can be carried out in 4 h ( t 1/2 ∼ 40 min) instead of 20 h, affording ∼1/5th the chlorin byproduct (0.16%) while maintaining the yield of BC-1 (up to 77%); (2) the separate Z / E -enones of III have comparable reactivity; (3) sub-stoichiometric quantities of acid are ineffective; (4) the Knoevenagel condensation (40 mM, room temperature, piperidine/acetic acid in acetonitrile) and the acid-mediated double-ring closure (0.20 mM, 80 °C, Yb(OTf) 3 in acetonitrile) can be carried out in a two-step process; and (5) zinc insertion to form ZnBC-1 is straightforward. Together, the results enable streamlined conversion of dihydrodipyrrin reactants to the bacteriochlorophyll model compounds. 
    more » « less
  4. Nie, Zhihong (Ed.)
    Immiscible blends of poly(methyl acrylate) (PMA) and poly(methyl methacrylate) (PMMA) exhibit component dynamics and dynamics confinement effect at the PMA/PMMA-g-Fe3O4interface, suggesting new routes to control interface dynamics. 
    more » « less
  5. Abstract The conformation in solution of monocrotaline, a pyrrolizidine alkaloid presenting an eleven‐membered macrocyclic diester ring, has been investigated using a combination of isotropic and anisotropic nuclear magnetic resonance parameters measured in four solvents of different polarity (D2O, DMSO‐d6, CDCl3, and C6D6). Anisotropic nuclear magnetic resonance parameters were measured in different alignment media, based on their compatibility with the solvent of interest: cromoglycate liquid crystal solution was used for D2O, whereas a poly (methyl methacrylate) polymer gel was chosen for CDCl3and C6D6, and a poly (hydroxyethyl methacrylate) gel for DMSO‐d6. Whereas the pyrrolizidine ring shows anE6exo‐puckered conformation in all of the solvents, the macrocyclic eleven‐membered ring adopts different populations ofsyn‐parallel andanti‐parallel relative orientation of the carbonyl groups according to the polarity of the solvent. 
    more » « less