skip to main content


This content will become publicly available on October 20, 2024

Title: Effect of the Nature of Both Cation and Anion Substitution on the Structural Symmetry of Li‐Rich 3 d ‐Metal Chalcogenide Electrodes
Abstract

Li‐rich layered chalcogenides have recently led to better understanding of the anionic redox process and its associated high capacity while providing ways to overcome its practical limitations of voltage fade and irreversibility. This study reports on the feasibility of triggering anionic activity in Li2TiS3, through anionic substitution (Se for S) or cationic substitution (Fe for Ti). Herein, the chalcogenide chemical space is further explored to prepare mono‐substituted Li1.7Ti0.85Mn0.45Ch3(Ch = S/Se) and doubly substituted cationic and anionic phases (Li1.7Ti0.85Fe0.45S3‐zSez) which crystallize either in the O3‐ or O1‐type structures depending upon substituents. All series show a bell‐shape capacity variation as function of the transition metal (TM) substitution degree with values up to 240 mAh g−1. For specific compositions, a structural O3 to O1 phase transition is observed upon Li removal, which is not reversible upon Li re‐insertion due to kinetic limitations and negatively affects long‐term cycling performance. Density functional theory (DFT) calculations confirm the O3/O1 relative stability along the different series and point subtle electronic differences in the TM‐doping, rationalizing the structural and electrochemical behaviors of these phases upon cycling. These findings provide further insights into the link between structural and electronic stability, which is of key importance for designing chalcogenide‐based anionic redox compounds.

 
more » « less
Award ID(s):
2118020
NSF-PAR ID:
10469997
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
13
Issue:
45
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigate high‐valent oxygen redox in the positive Na‐ion electrode P2‐Na0.67−x[Fe0.5Mn0.5]O2(NMF) where Fe is partially substituted with Cu (P2‐Na0.67−x[Mn0.66Fe0.20Cu0.14]O2, NMFC) or Ni (P2‐Na0.67−x[Mn0.65Fe0.20Ni0.15]O2, NMFN). From combined analysis of resonant inelastic X‐ray scattering and X‐ray near‐edge structure with electrochemical voltage hysteresis and X‐ray pair distribution function profiles, we correlate structural disorder with high‐valent oxygen redox and its improvement by Ni or Cu substitution. Density of states calculations elaborate considerable anionic redox in NMF and NMFC without the widely accepted requirement of an A‐O‐A′ local configuration in the pristine materials (where A=Na and A′=Li, Mg, vacancy, etc.). We also show that the Jahn–Teller nature of Fe4+and the stabilization mechanism of anionic redox could determine the extent of structural disorder in the materials. These findings shed light on the design principles in TM and anion redox for positive electrodes to improve the performance of Na‐ion batteries.

     
    more » « less
  2. Abstract

    We investigate high‐valent oxygen redox in the positive Na‐ion electrode P2‐Na0.67−x[Fe0.5Mn0.5]O2(NMF) where Fe is partially substituted with Cu (P2‐Na0.67−x[Mn0.66Fe0.20Cu0.14]O2, NMFC) or Ni (P2‐Na0.67−x[Mn0.65Fe0.20Ni0.15]O2, NMFN). From combined analysis of resonant inelastic X‐ray scattering and X‐ray near‐edge structure with electrochemical voltage hysteresis and X‐ray pair distribution function profiles, we correlate structural disorder with high‐valent oxygen redox and its improvement by Ni or Cu substitution. Density of states calculations elaborate considerable anionic redox in NMF and NMFC without the widely accepted requirement of an A‐O‐A′ local configuration in the pristine materials (where A=Na and A′=Li, Mg, vacancy, etc.). We also show that the Jahn–Teller nature of Fe4+and the stabilization mechanism of anionic redox could determine the extent of structural disorder in the materials. These findings shed light on the design principles in TM and anion redox for positive electrodes to improve the performance of Na‐ion batteries.

     
    more » « less
  3. Abstract

    The reactivity of water with Li‐rich layered Li2RuO3and partial exchange of Li2O with H2O within the structure is studied under aqueous (electro)chemical conditions. Upon slow delithiation in water over long time periods, micron‐sized Li2RuO3particles structurally transform from an O3 structure to an O1 structure with a corresponding loss of 1.25 Li ions per formula unit. The O1 stacking of the honeycomb Ru layers is imaged using high‐resolution high‐angle annular dark‐field scanning transmission electron microscopy, and the resulting structure is solved by X‐ray powder diffraction and electron diffraction. In situ X‐ray absorption spectroscopy suggests that reversible oxidation/reduction of bulk Ru sites is realized on potential cycling between 0.4 and 1.25 VRHEin basic solutions. In addition to surface redox pseudocapacitance, the partially delithiated phase of Li2RuO3shows high capacity, which can be attributed to bulk Ru redox in the structure. This work demonstrates that the interaction of aqueous electrolytes with Li‐rich layered oxides can result in the formation of new phases with (electro)chemical properties that are distinct from the parent material. This understanding is important for the design of aqueous batteries, electrochemical capacitors, and chemically stable cathode materials for Li‐ion batteries.

     
    more » « less
  4. Abstract

    Li‐rich oxide cathodes are of prime importance for the development of high‐energy lithium‐ion batteries (LIBs). Li‐rich layered oxides, however, always undergo irreversible structural evolution, leading to inevitable capacity and voltage decay during cycling. Meanwhile, Li‐rich cation‐disordered rock‐salt oxides usually exhibit sluggish kinetics and inferior cycling stability, despite their firm structure and stable voltage output. Herein, a new Li‐rich rock‐salt oxide Li2Ni1/3Ru2/3O3withFd‐3mspace group, where partial cation‐ordering arrangement exists in cationic sites, is reported. Results demonstrate that a cathode fabricated from Li2Ni1/3Ru2/3O3delivers a large capacity, outstanding rate capability as well as good cycling performance with negligible voltage decay, in contrast to the common cations disordered oxides with space groupFm‐3m. First principle calculations also indicate that rock‐salt oxide with space groupFd‐3mpossesses oxygen activity potential at the state of delithiation, and good kinetics with more 0‐TM (TM = transition metals) percolation networks. In situ Raman results confirm the reversible anionic redox chemistry, confirming O2−/Oevolution during cycles in Li‐rich rock‐salt cathode for the first time. These findings open up the opportunity to design high‐performance oxide cathodes and promote the development of high‐energy LIBs.

     
    more » « less
  5. Abstract

    Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature.

     
    more » « less