skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Active Plasmonics and Active Chiral Plasmonics through Orientation-Dependent Multipolar Interactions
Award ID(s):
1760537
PAR ID:
10220840
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ACS Nano
Volume:
14
Issue:
9
ISSN:
1936-0851
Page Range / eLocation ID:
11518 to 11532
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Physical processes involving hot electrons, including their generation, transport, injection, and relaxation, have been an extensive area of research. The most widely utilized method for actuating the creation of hot electrons involves the excitation of plasmonic modes followed by their non-radiative decay, channeling the energy into these energetic carriers. Since plasmonics has already evolved into a mature field of scientific exploration, active plasmonic devices serve as an ideal platform to study hot-electron physics. In this Perspective article, we will provide the reader with a comprehensive outline of the physics underlying hot-electron dynamics. Emphasis will be placed on the characteristic timescales involved with the lifecycle of hot electrons, the generation and decay mechanisms of surface plasmon-induced hot electrons, and the material platforms suitable for such a study. Then, we will move on to discuss different temperature models used to explain the evolution of hot electrons and the changes in the optical properties of the materials they are generated in or injected into. Finally, we will focus on some of the interesting optical phenomena occurring at ultrafast timescales mediated by hot-carrier dynamics. Such a discussion is expected to incorporate valuable insights into our understanding of the synergistic relationship between hot-electron dynamics and active plasmonics, thereby paving the way for novel applications involving optoelectronics and energy conversion. 
    more » « less
  2. Metals, semiconductors, metamaterials, and various two-dimensional materials with plasmonic dispersion exhibit numerous exotic physical effects in the presence of an external bias, for example an external static magnetic field or electric current. These physical phenomena range from Faraday rotation of light propagating in the bulk to strong confinement and directionality of guided modes on the surface and are a consequence of the breaking of Lorentz reciprocity in these systems. The recent introduction of relevant concepts of topological physics, translated from condensed-matter systems to photonics, has not only given a new perspective on some of these topics by relating certain bulk properties of plasmonic media to the surface phenomena, but has also led to the discovery of new regimes of truly unidirectional, backscattering-immune, surface-wave propagation. In this article, we briefly review the concepts of nonreciprocity and topology and describe their manifestation in plasmonic materials. Furthermore, we use these concepts to classify and discuss the different classes of guided surface modes existing on the interfaces of various plasmonic systems. 
    more » « less
  3. Plasmonics and optical metastructures represent cutting-edge frontiers in nanophotonics, enabling on-demand control of light at the subwavelength scale. This special topic of the Journal of Applied Physics highlights the recent advancements and synergy of the two fields, delving into the fundamental physics governing plasmonic phenomena and showcasing innovative metastructures that hold significant potential for diverse applications, including sensing, optical manipulation, wireless communication, optical computing, and beyond. 
    more » « less
  4. null (Ed.)