Abstract Plasmonic hot‐electron‐assisted control of emission intensities and dynamics of CdSe/ZnS and infrared PbS quantum dots are studied. This is done by exploring the impact of Au/Si and Ag/Si Schottky junctions on the decay rates of such quantum dots when these junctions are placed in close vicinity of a Si/Al oxide charge barrier, forming metal‐oxide plasmonic metafilms. Such structures are used to investigate how metal‐dependent distributions of hot electrons and their capture via Schottky junctions can lead to suppression of the defect environments of quantum dots, offering a novel platform wherein off‐resonant (non‐Purcell) plasmonic processes are used to control exciton dynamics. These results show that Ag metafilms can enhance the emission of CdSe/ZnS quantum dots and elongate their lifetimes more than Au metafilms. This highlights the more efficient nature of Ag/Si Schottky junctions for hot electron excitation and capture. These results also show that such junctions can significantly suppress the nonradiative decay rates of PbS quantum dots at frequencies far from the plasmon resonances. These results demonstrate a field‐effect passivation of quantum dot defects via entrapment of hot electrons and control of emission intensities and dynamics of quantum dots via the nearly frequency‐independent electrostatic field of such electrons.
more »
« less
Exploring the synergy between hot-electron dynamics and active plasmonics: A perspective
Physical processes involving hot electrons, including their generation, transport, injection, and relaxation, have been an extensive area of research. The most widely utilized method for actuating the creation of hot electrons involves the excitation of plasmonic modes followed by their non-radiative decay, channeling the energy into these energetic carriers. Since plasmonics has already evolved into a mature field of scientific exploration, active plasmonic devices serve as an ideal platform to study hot-electron physics. In this Perspective article, we will provide the reader with a comprehensive outline of the physics underlying hot-electron dynamics. Emphasis will be placed on the characteristic timescales involved with the lifecycle of hot electrons, the generation and decay mechanisms of surface plasmon-induced hot electrons, and the material platforms suitable for such a study. Then, we will move on to discuss different temperature models used to explain the evolution of hot electrons and the changes in the optical properties of the materials they are generated in or injected into. Finally, we will focus on some of the interesting optical phenomena occurring at ultrafast timescales mediated by hot-carrier dynamics. Such a discussion is expected to incorporate valuable insights into our understanding of the synergistic relationship between hot-electron dynamics and active plasmonics, thereby paving the way for novel applications involving optoelectronics and energy conversion.
more »
« less
- Award ID(s):
- 2004749
- PAR ID:
- 10593614
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 136
- Issue:
- 10
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Utilizing plasmon‐generated hot carriers to drive chemical reactions has emerged as a popular topic in solar photocatalysis. However, a complete description of the underlying mechanism of hot‐carrier transfer in photochemical processes remains elusive, particularly for those involving hot holes. Photoelectrochemistry enables to localize hot holes on photoanodes and hot electrons on photocathodes and thus offers an approach to separately explore the hole‐transfer dynamics and electron‐transfer dynamics. This review summarizes a comprehensive understanding of both hot‐hole and hot‐electron transfers from photoelectrochemical studies on plasmonic electrodes. Additionally, working principles and applications of spectroelectrochemistry are discussed for plasmonic materials. It is concluded that photoelectrochemistry provides a powerful toolbox to gain mechanistic insights into plasmonic photocatalysis.more » « less
-
null (Ed.)Plasmonic nanostructures possess broadly tunable optical properties with catalytically active surfaces. They offer new opportunities for achieving efficient solar-to-chemical energy conversion. Plasmonic metal–semiconductor heterostructures have attracted heightened interest due to their capability of generating energetic hot electrons that can be collected to facilitate chemical reactions. In this article, we present a detailed survey of recent examples of plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry, including plasmonic metal–oxide, plasmonic metal–two-dimensional materials, and plasmonic metal–metal–organic frameworks. We conclude with a discussion on the remaining challenges in the field and an outlook regarding future opportunities for designing high-performance plasmonic metal–semiconductor heterostructures for photochemistry.more » « less
-
Light is a preeminent spectroscopic tool for investigating the electronic structure of surfaces. Time-resolved photoelectron spectroscopy has mainly been developed in the last 30 years. It is therefore not surprising that the topic was hardly mentioned in the issue on ‘‘The first thirty years’’ of surface science. In the second thirty years, however, we have seen tremendous progress in the development of time-resolved photoelectron spectroscopy on surfaces. Femtosecond light pulses and advanced photoelectron detection schemes are increasingly being used to study the electronic structure and dynamics of occupied and unoccupied electronic states and dynamic processes such as the energy and momentum relaxation of electrons, charge transfer at interfaces and collective processes such as plasmonic excitation and optical field screening. Using spin- and time-resolved photoelectron spectroscopy, we were able to study ultrafast spin dynamics, electron–magnon scattering and spin structures in magnetic and topological materials. Light also provides photon energy as well as electric and magnetic fields that can influence molecular surface processes to steer surface photochemistry and hot-electron-driven catalysis. In addition, we can consider light as a chemical reagent that can alter the properties of matter by creating non-equilibrium states and ultrafast phase transitions in correlated materials through the coupling of electrons, phonons and spins. Electric fields have also been used to temporarily change the electronic structure. This opened up new methods and areas such as high harmonic generation, light wave electronics and attosecond physics. This overview certainly cannot cover all these interesting topics. But also as a testimony to the cohesion and constructive exchange in our ultrafast community, a number of colleagues have come together to share their expertise and views on the very vital field of dynamics at surfaces.more » « less
-
Aluminum nanocrystals offer a promising platform for plasmonic photocatalysis, yet a detailed understanding of their electron dynamics and consequent photocatalytic performance has been challenging thus far due to computational limitations. Here, we employ density functional tight-binding methods (DFTB) to investigate the optical properties and H2 dissociation dynamics of Al nanocrystals with varying sizes and geometries. Our real-time simulations reveal that Al’s unique free-electron nature enables efficient light-matter interactions and rapid electronic thermalization. Cubic and octahedral nanocrystals ranging from 0.5 to 4.5 nm exhibit size-dependent plasmon resonances in the UV, with distinct spectral features arising from the particle geometry and electronic structure. By simulating H2 dissociation near Al nanocrystals, we demonstrate that hot electrons generated through plasmon excitation can overcome the molecule’s strong chemical bond within tens of femtoseconds. The laser intensity threshold is comparable to previous reports for Ag nanocrystals, though significantly lower than that of Au. Notably, the dipolar plasmon mode demonstrates higher efficiency for this reaction than the localized interband transition for particles at these sizes. Taken together, this work provides mechanistic insights into plasmon-driven catalysis and showcases DFTB’s capability to study quantum plasmonics at unprecedented length and time scales.more » « less
An official website of the United States government
