skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrodynamic instability at impact interfaces and planetary implications
Abstract Impact-induced mixing between bolide and target is fundamental to the geochemical evolution of a growing planet, yet aside from local mixing due to jetting – associated with large angles of incidence between impacting surfaces – mixing during planetary impacts is poorly understood. Here we describe a dynamic instability of the surface between impacting materials, showing that a region of mixing grows between two media having even minimal initial topography. This additional cause of impact-induced mixing is related to Richtmyer-Meshkov instability (RMI), and results from pressure perturbations amplified by shock-wave refraction through the corrugated interface between impactor and target. However, unlike RMI, this new impact-induced instability appears even if the bodies are made of the same material. Hydrocode simulations illustrate the growth of this mixing zone for planetary impacts, and predict results suitable for experimental validation in the laboratory. This form of impact mixing may be relevant to the formation of stony-iron and other meteorites.  more » « less
Award ID(s):
2020249
PAR ID:
10220876
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When a liquid drop strikes a deep pool of a target liquid, an impact crater opens while the liquid of the drop decelerates and spreads on the surface of the crater. When the density of the drop is larger than the target liquid, we observe mushroom-shaped instabilities growing at the interface between the two liquids. We interpret this instability as a spherical Rayleigh–Taylor instability due to the deceleration of the interface, which exceeds the ambient gravity. We investigate experimentally the effect of the density contrast and the impact Froude number, which measures the importance of the impactor kinetic energy to gravitational energy, on the instability and the resulting mixing layer. Using backlighting and planar laser-induced fluorescence methods, we obtain the position of the air–liquid interface, an estimate of the instability wavelength, and the thickness of the mixing layer. We derive a model for the evolution of the crater radius from an energy conservation. We then show that the observed dynamics of the mixing layer results from a competition between the geometrical expansion of the crater, which tends to thin the layer, and entrainment related to the instability, which increases the layer thickness. The mixing caused by this instability has geophysical implications for the impacts that formed terrestrial planets. Extrapolating our scalings to planets, we estimate the mass of silicates that equilibrates with the metallic core of the impacting bodies. 
    more » « less
  2. Abstract The meridional temperature profile of the upper layers of planetary atmospheres is set through a balance between differential radiative heating by a nearby star, or by intrinsic heat fluxes emanating from the deep interior, and the redistribution of that heat across latitudes by turbulent flows. These flows spontaneously arise through baroclinic instability of the meridional temperature gradients maintained by the forcing. When planetary curvature is neglected, this turbulence takes the form of coherent vortices that mix the meridional temperature profiles. However, the curvature of the planet favors the emergence of Rossby waves and zonal jets that restrict the meridional wandering of the fluid columns, thereby reducing the mixing efficiency across latitudes. A similar situation arises in the ocean, where the baroclinic instability of zonal currents leads to enhanced meridional heat transport by a turbulent flow consisting of vortices and zonal jets. A recent scaling theory for the turbulent heat transport by vortices is extended to include the impact of planetary curvature, in the framework of the two‐layer quasi‐geostrophic beta‐plane model. This leads to a quantitative parameterization providing the meridional temperature profile in terms of the externally imposed heat flux in an idealized model of planetary atmospheres and oceans. In addition, it provides a quantitative prediction for the emergent criticality, that is, the degree of instability in a canonical model of planetary atmosphere or ocean. 
    more » « less
  3. Abstract This study explores the impact of coupling cumulus and planetary boundary layer (PBL) parameterizations on diurnal precipitation forecasting during the plum rainy season in Jiangsu Province, China, using a double grid‐nesting approach. Results show that coherent coupling of cumulus (only in the 15 km grid outer domain [O]) and PBL parameterizations leads to improved forecasting of diurnal variations in the morning, afternoon, and the evening. Increasing the frequency of the Kain‐Fritsch (KF) cumulus scheme in [O] enhances subgrid precipitation while reducing grid‐scale precipitation, resulting in a more accurate representation of daytime convective activities and a reduction in over‐forecasting of evening valley and early‐morning precipitation. Additionally, coupling a suitable PBL scheme mitigates the overpredicted afternoon peak by facilitating turbulent mixing to penetrate higher altitudes with a thicker layer, thereby reducing instability energy accumulation. A higher KF frequency in [O] retains less low tropospheric moisture, reducing moisture convergence into the 1 km grid inner domain [I] and decreasing overpredicted daytime precipitation in [I]. Various PBL schemes produce distinct vertical distributions of turbulent moisture and heat transport, impacting convection and precipitation in [I] resolved by cloud microphysics processes. The coherent coupling of these parameterizations maintains a balanced supply of convective energy and water vapor, significantly improving diurnal precipitation forecasts in [I]. Isolating these parameterizations between nested grids may undermine this improvement. 
    more » « less
  4. Necessary conditions for radiative–dynamical instability of quasigeostrophic waves induced by trace shortwave radiative absorbers are derived. The analysis pivots on a pseudomomentum conservation equation that is obtained by combining conservation equations for quasigeostrophic potential vorticity, thermodynamic energy, and trace absorber mixing ratio. Under the assumptions that the absorber-induced diabatic heating rate is small and the zonal-mean basic state is hydrodynamically neutral, a perturbation analysis of the pseudomomentum equation yields the conditions for instability. The conditions, which only require knowledge of the zonally averaged background distributions of wind and absorber, expose the physical processes involved in destabilization—processes not exposed in previous analytical and modeling studies of trace absorber-induced instabilities. The simplicity of instability conditions underscores their utility as a tool that is both interpretive and predictive. The conditions for instability, which have broad application to synoptic-scale waves in Earth's and other planetary atmospheres, are discussed in light of previous instability studies involving stratospheric ozone and Saharan mineral dust aerosols. 
    more » « less
  5. Abstract A combined analysis of smooth and non-smooth bifurcations captures the interplay of different qualitative transitions in a canonical model of an impact pair, a forced capsule in which a ball moves freely between impacts on either end of the capsule. The analysis, generic for the impact pair context, is also relevant for applications. It is applied to a model of an inclined vibro-impact energy harvester device, where the energy is generated via impacts of the ball with a dielectric polymer on the capsule ends. While sequences of bifurcations have been studied extensively in single- degree-of-freedom impacting models, there are limited results for two-degree-of-freedom impacting systems such as the impact pair. Using an analytical characterization of impacting solutions and their stability based on the maps between impacts, we obtain sequences of period doubling and fold bifurcations together with grazing bifurcations, a particular focus here. Grazing occurs when a sequence of impacts on either end of the capsule are augmented by a zero-velocity impact, a transition that is fundamentally different from the smooth bifurcations that are instead characterized by eigenvalues of the local behavior. The combined analyses allow identification of bifurcations also on unstable or unphysical solutions branches, which we term ghost bifurcations. While these ghost bifurcations are not observed experimentally or via simple numerical integration of the model, nevertheless they can influence the birth or death of complex behaviors and additional grazing transitions, as confirmed by comparisons with the numerical results. The competition between the different bifurcations and their ghosts influences the parameter ranges for favorable energy output; thus, the analyses of bifurcation sequences yield important design information. 
    more » « less