skip to main content

Search for: All records

Award ID contains: 2020249

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Impact-induced mixing between bolide and target is fundamental to the geochemical evolution of a growing planet, yet aside from local mixing due to jetting – associated with large angles of incidence between impacting surfaces – mixing during planetary impacts is poorly understood. Here we describe a dynamic instability of the surface between impacting materials, showing that a region of mixing grows between two media having even minimal initial topography. This additional cause of impact-induced mixing is related to Richtmyer-Meshkov instability (RMI), and results from pressure perturbations amplified by shock-wave refraction through the corrugated interface between impactor and target. However, unlike RMI, this new impact-induced instability appears even if the bodies are made of the same material. Hydrocode simulations illustrate the growth of this mixing zone for planetary impacts, and predict results suitable for experimental validation in the laboratory. This form of impact mixing may be relevant to the formation of stony-iron and other meteorites.

  2. Abstract One of the unique aspects of Earth is that it has a fractionally large Moon, which is thought to have formed from a Moon-forming disk generated by a giant impact. The Moon stabilizes the Earth’s spin axis at least by several degrees and contributes to Earth’s stable climate. Given that impacts are common during planet formation, exomoons, which are moons around planets in extrasolar systems, should be common as well, but no exomoon has been confirmed. Here we propose that an initially vapor-rich moon-forming disk is not capable of forming a moon that is large with respect to the size of the planet because growing moonlets, which are building blocks of a moon, experience strong gas drag and quickly fall toward the planet. Our impact simulations show that terrestrial and icy planets that are larger than ~1.3−1.6 R ⊕ produce entirely vapor disks, which fail to form a fractionally large moon. This indicates that (1) our model supports the Moon-formation models that produce vapor-poor disks and (2) rocky and icy exoplanets whose radii are smaller than ~1.6 R ⊕ are ideal candidates for hosting fractionally large exomoons.
    Free, publicly-accessible full text available December 1, 2023
  3. Abstract The properties of all materials at one atmosphere of pressure are controlled by the configurations of their valence electrons. At extreme pressures, neighboring atoms approach so close that core-electron orbitals overlap, and theory predicts the emergence of unusual quantum behavior. We ramp-compress monovalent elemental sodium, a prototypical metal at ambient conditions, to nearly 500 GPa (5 million atmospheres). The 7-fold increase of density brings the interatomic distance to 1.74 Å well within the initial 2.03 Å of the Na + ionic diameter, and squeezes the valence electrons into the interstitial voids suggesting the formation of an electride phase. The laser-driven compression results in pressure-driven melting and recrystallization in a billionth of a second. In situ x-ray diffraction reveals a series of unexpected phase transitions upon recrystallization, and optical reflectivity measurements show a precipitous decrease throughout the liquid and solid phases, where the liquid is predicted to have electronic localization. These data reveal the presence of a rich, temperature-driven polymorphism where core electron overlap is thought to stabilize the formation of peculiar electride states.
    Free, publicly-accessible full text available December 1, 2023
  4. Abstract There has been considerable recent interest in the high-pressure behavior of silicon carbide, a potential major constituent of carbon-rich exoplanets. In this work, the atomic-level structure of SiC was determined through in situ X-ray diffraction under laser-driven ramp compression up to 1.5 TPa; stresses more than seven times greater than previous static and shock data. Here we show that the B1-type structure persists over this stress range and we have constrained its equation of state (EOS). Using this data we have determined the first experimentally based mass-radius curves for a hypothetical pure SiC planet. Interior structure models are constructed for planets consisting of a SiC-rich mantle and iron-rich core. Carbide planets are found to be ~10% less dense than corresponding terrestrial planets.
    Free, publicly-accessible full text available December 1, 2023
  5. Abstract Recent discoveries of water-rich Neptune-like exoplanets require a more detailed understanding of the phase diagram of H 2 O at pressure–temperature conditions relevant to their planetary interiors. The unusual non-dipolar magnetic fields of ice giant planets, produced by convecting liquid ionic water, are influenced by exotic high-pressure states of H 2 O—yet the structure of ice in this state is challenging to determine experimentally. Here we present X-ray diffraction evidence of a body-centered cubic (BCC) structured H 2 O ice at 200 GPa and ~ 5000 K, deemed ice XIX, using the X-ray Free Electron Laser of the Linac Coherent Light Source to probe the structure of the oxygen sub-lattice during dynamic compression. Although several cubic or orthorhombic structures have been predicted to be the stable structure at these conditions, we show this BCC ice phase is stable to multi-Mbar pressures and temperatures near the melt boundary. This suggests variable and increased electrical conductivity to greater depths in ice giant planets that may promote the generation of multipolar magnetic fields.
    Free, publicly-accessible full text available December 1, 2023
  6. A laser-driven shock propagating through an isolated particle embedded in a plastic (CH) target was studied using the radiation-hydrodynamic code FLASH. Preliminary simulations using IONMIX equations of state (EOS) showed significant differences in the shock Hugoniot of aluminum compared to experimental data in the low-pressure regime [ O(10) GPa], resulting in higher streamwise compression and deformation of an aluminum particle. Hence, a simple modification to the ideal gas EOS was developed and employed to describe the target materials and examine the particle dynamics. The evolution of the pressure field demonstrated a complex wave interaction, resulting in a highly unsteady particle drag which featured two drag minima due to shock focusing at the rear end of the particle and rarefaction stretching due to laser shut-off. Although ∼30% lateral expansion and ∼25% streamwise compression were observed, the aluminum particle maintained considerable integrity without significant distortion. Additional simulations examined the particle response for a range of particle densities, sizes, and acoustic impedances. The results revealed that lighter particles such as aluminum gained significant momentum, reaching up to ∼96% of the shocked CH's speed, compared to ∼29% for the heavier tungsten particles. Despite the differences seen in the early stage of shock interaction, particlesmore »with varying acoustic impedances ultimately reached the same peak velocity. This identified particle-to-host density ratio is an important factor in determining the inviscid terminal velocity of the particle. In addition, the modified EOS model presented in this study could be used to approximate solid materials in hydrocodes that lack material strength models.« less
    Free, publicly-accessible full text available May 1, 2023
  7. When a liquid drop strikes a deep pool of a target liquid, an impact crater opens while the liquid of the drop decelerates and spreads on the surface of the crater. When the density of the drop is larger than the target liquid, we observe mushroom-shaped instabilities growing at the interface between the two liquids. We interpret this instability as a spherical Rayleigh–Taylor instability due to the deceleration of the interface, which exceeds the ambient gravity. We investigate experimentally the effect of the density contrast and the impact Froude number, which measures the importance of the impactor kinetic energy to gravitational energy, on the instability and the resulting mixing layer. Using backlighting and planar laser-induced fluorescence methods, we obtain the position of the air–liquid interface, an estimate of the instability wavelength, and the thickness of the mixing layer. We derive a model for the evolution of the crater radius from an energy conservation. We then show that the observed dynamics of the mixing layer results from a competition between the geometrical expansion of the crater, which tends to thin the layer, and entrainment related to the instability, which increases the layer thickness. The mixing caused by this instability has geophysicalmore »implications for the impacts that formed terrestrial planets. Extrapolating our scalings to planets, we estimate the mass of silicates that equilibrates with the metallic core of the impacting bodies.« less
    Free, publicly-accessible full text available April 25, 2023
  8. Free, publicly-accessible full text available February 18, 2023
  9. Free, publicly-accessible full text available February 1, 2023
  10. Abstract We perform ab initio simulations of beryllium (Be) and magnesium oxide (MgO) at megabar pressures and compare their structural and thermodynamic properties. We make a detailed comparison of our two recently derived phase diagrams of Be (Wu et al 2021 Phys. Rev. B 104 014103) and MgO (Soubiran and Militzer 2020 Phys. Rev. Lett. 125 175701) using the thermodynamic integration technique, as they exhibit striking similarities regarding their shape. We explore whether the Lindemann criterion can explain the melting temperatures of these materials through the calculation of the Debye temperature at high pressure. From our free energy calculations, we find that the melting line of both materials is well represented by the Simon–Glazel fit T m ( P ) = T 0 (1 + P / a ) 1/ c , where T 0 = 1564 K, a = 15.8037 GPa and c = 2.4154 for Be, while T 0 = 3010 K, a = 10.5797 GPa and c = 2.8683 for the MgO in the B1. For the B2 phase, we use the values a = 26.1163 GPa and c = 2.2426. Both materials exhibit negative Clapeyron slopes on the boundaries between the two solid phases that are stronglymore »affected by anharmonic effects, which also influence the location of the solid–solid–liquid triple point. We find that the quasi-harmonic approximation underestimates the stability range of the low-pressure phases, namely hcp for Be and B1 for MgO. We also compute the phonon dispersion relations at low and high pressure for each of the phases of these materials, and also explore how the phonon density of states is modified by temperature. Finally, we derive secondary shock Hugoniot curves in addition to the principal Hugoniot curve for both materials, and study their offsets in pressure between solid and liquid branches.« less
    Free, publicly-accessible full text available February 1, 2023