Abstract Embedding a collective of tumor cells, i.e. a tumor spheroid, in a fibrous environment, such as a collagen network, provides an essentialin vitroplatform to investigate the biophysical mechanisms of tumor invasion. To predict new mechanisms, we develop a three-dimensional computational model of an embedded spheroid using a vertex model, with cells represented as deformable polyhedrons, mechanically coupled to a fiber network via active linker springs. As the linker springs actively contract, the fiber network remodels. As we tune the rheology of the spheroid and the fiber network stiffness, we find that both factors affect the remodeling of the fiber network with fluid-like spheroids densifying and radially realigning the fiber network more on average than solid-like spheroids but only for a range of intermediate fiber network stiffnesses. Our predictions are supported by experimental studies comparing non-tumorigenic MCF10A spheroids and malignant MDA-MB-231 spheroids embedded in collagen networks. The spheroid rheology-dependent effects are the result of cellular motility generating spheroid shape fluctuations. These shape fluctuations lead to emergent feedback between the spheroid and the fiber network to further remodel the fiber network. This emergent feedback occurs only at intermediate fiber network stiffness since at low fiber network stiffness, the mechanical response of the coupled system is dominated by the spheroid and for high fiber network stiffness, the mechanical response is dominated by the fiber network. We are therefore able to quantify the regime of optimal spheroid-fiber network mechanical reciprocity. Our results uncover intricate morphological-mechanical interplay between an embedded spheroid and its surrounding fiber network with both spheroid contractile strengthandspheroid shape fluctuations playing important roles in the pre-invasion stages of tumor invasion. 
                        more » 
                        « less   
                    
                            
                            Actively Driven Fluctuations in a Fibrin Network
                        
                    
    
            Understanding force propagation through the fibrous extracellular matrix can elucidate how cells interact mechanically with their surrounding tissue. Presumably, due to elastic nonlinearities of the constituent filaments and their random connection topology, force propagation in fiber networks is quite complex, and the basic problem of force propagation in structurally heterogeneous networks remains unsolved. We report on a new technique to detect displacements through such networks in response to a localized force, using a fibrin hydrogel as an example. By studying the displacements of fibers surrounding a two-micron bead that is driven sinusoidally by optical tweezers, we develop maps of displacements in the network. Fiber movement is measured by fluorescence intensity fluctuations recorded by a laser scanning confocal microscope. We find that the Fourier magnitude of these intensity fluctuations at the drive frequency identifies fibers that are mechanically coupled to the driven bead. By examining the phase relation between the drive and the displacements, we show that the fiber displacements are, indeed, due to elastic couplings within the network. Both the Fourier magnitude and phase depend on the direction of the drive force, such that displacements typically propagate farther, but not exclusively, along the drive direction. This technique may be used to characterize the local mechanical response in 3-D tissue cultures, and to address fundamental questions about force propagation within fiber networks. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1709785
- PAR ID:
- 10220925
- Date Published:
- Journal Name:
- Frontiers in Physics
- Volume:
- 8
- ISSN:
- 2296-424X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Fiber networks are the primary structural components of many biological structures, including the cell cytoskeleton and the extracellular matrix. These materials exhibit global nonlinearities, such as stiffening in extension and shear, during which the fibers bend and align with the direction of applied loading. Precise details of deformations at the scale of the fibers during strain stiffening are still lacking, however, as prior work has studied fiber alignment primarily from a qualitative perspective, which leaves incomplete the understanding of how the local microstructural evolution leads to the global mechanical behavior. To fill this gap, we studied how axial forces are transmitted inside the fiber network along paths called force chains, which continuously evolve during the course of deformation. We performed numerical simulations on two-dimensional networks of random fibers under uniaxial extension and shear, modeling the fibers using beam elements in finite element software. To quantify the force chains, we identified all chains of connected fibers for which the axial force was larger than a preset threshold and computed the total length of all such chains. To study the evolution of force chains during loading, we computed the derivative of the total length of all force chains with respect to the applied engineering strain. Results showed that the highest rate of evolution of force chains coincided with the global critical strain for strain stiffening of the fiber network. Therefore, force chains are an important factor connecting understanding of the local kinematics and force transmission to the macroscale stiffness of the fiber network.more » « less
- 
            Abstract This paper describes a new method for estimating anisotropic mechanical properties of fibrous soft tissue by imaging shear waves induced by focused ultrasound (FUS) and analyzing their direction-dependent speeds. Fibrous materials with a single, dominant fiber direction may exhibit anisotropy in both shear and tensile moduli, reflecting differences in the response of the material when loads are applied in different directions. The speeds of shear waves in such materials depend on the propagation and polarization directions of the waves relative to the dominant fiber direction. In this study, shear waves were induced in muscle tissue (chicken breast) ex vivo by harmonically oscillating the amplitude of an ultrasound beam focused in a cylindrical tissue sample. The orientation of the fiber direction relative to the excitation direction was varied by rotating the sample. Magnetic resonance elastography (MRE) was used to visualize and measure the full 3D displacement field due to the ultrasound-induced shear waves. The phase gradient (PG) of radially propagating “slow” and “fast” shear waves provided local estimates of their respective wave speeds and directions. The equations for the speeds of these waves in an incompressible, transversely isotropic (TI), linear elastic material were fitted to measurements to estimate the shear and tensile moduli of the material. The combination of focused ultrasound and MR imaging allows noninvasive, but comprehensive, characterization of anisotropic soft tissue.more » « less
- 
            Cells can sense and respond to mechanical forces in fibrous extracellular matrices (ECMs) over distances much greater than their size. This phenomenon, termed long-range force transmission, is enabled by the realignment (buckling) of collagen fibers along directions where the forces are tensile (compressive). However, whether other key structural components of the ECM, in particular glycosaminoglycans (GAGs), can affect the efficiency of cellular force transmission remains unclear. Here we developed a theoretical model of force transmission in collagen networks with interpenetrating GAGs, capturing the competition between tension-driven collagen fiber alignment and the swelling pressure induced by GAGs. Using this model, we show that the swelling pressure provided by GAGs increases the stiffness of the collagen network by stretching the fibers in an isotropic manner. We found that the GAG-induced swelling pressure can help collagen fibers resist buckling as the cells exert contractile forces. This mechanism impedes the alignment of collagen fibers and decreases long-range cellular mechanical communication. We experimentally validated the theoretical predictions by comparing the intensity of collagen fiber alignment between cellular spheroids cultured on collagen gels versus collagen–GAG cogels. We found significantly lower intensities of aligned collagen in collagen–GAG cogels, consistent with the prediction that GAGs can prevent collagen fiber alignment. The role of GAGs in modulating force transmission uncovered in this work can be extended to understand pathological processes such as the formation of fibrotic scars and cancer metastasis, where cells communicate in the presence of abnormally high concentrations of GAGs.more » « less
- 
            Abstract Vaginal childbirth is the final phase of pregnancy when one or more fetuses pass through the birth canal from the uterus, and it is a biomechanical process. The uterine active contraction, causing the pushing force on the fetus, plays a vital role in regulating the fetus delivery process. In this project, the active contraction behaviors of muscle tissue were first modeled and investigated. After that, a finite element method (FEM) model to simulate the uterine cyclic active contraction and delivery of a fetus was developed in ls-dyna. The active contraction was driven through contractile fibers modeled as one-dimensional truss elements, with the Hill material model governing their response. Fibers were assembled in the longitudinal, circumferential, and normal (transverse) directions to correspond to tissue microstructure, and they were divided into seven regions to represent the strong anisotropy of the fiber distribution and activity within the uterus. The passive portion of the uterine tissue was modeled with a Neo Hookean hyperelastic material model. Three active contraction cycles were modeled. The cyclic uterine active contraction behaviors were analyzed. Finally, the fetus delivery through the uterus was simulated. The model of the uterine active contraction presented in this paper modeled the contractile fibers in three-dimensions, considered the anisotropy of the fiber distribution, provided the uterine cyclic active contraction and propagation of the contraction waves, performed a large deformation, and caused the pushing effect on the fetus. This model will be combined with a model of pelvic structures so that a complete system simulating the second stage of the delivery process of a fetus can be established.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    