Abstract Vulnerability‐based frameworks are increasingly used to better understand water system performance under climate change. This work advances the use of stochastic weather generators for climate vulnerability assessments that simulate weather based on patterns of regional atmospheric flow (i.e., weather regimes) conditioned on global‐scale climate features. The model is semiparametric by design and includes (1) a nonhomogeneous Markov chain for weather regime simulation; (2) block bootstrapping and a Gaussian copula for multivariate, multisite weather simulation; and (3) modules to impose thermodynamic and dynamical climate change, including Clausius‐Clapeyron precipitation scaling, elevation‐dependent warming, and shifting dynamics of the El Niño–Southern Oscillation (ENSO). In this way, the model can be used to evaluate climate impacts on water systems based on hypotheses of dynamic and thermodynamic climate change. The model is developed and tested for cold‐season climate in the Tuolumne River Basin in California but is broadly applicable across the western United States. Results show that eight weather regimes exert strong influences over local climate in the Tuolumne Basin. Model simulations adequately preserve many of the historical statistics for precipitation and temperature across sites, including the mean, variance, skew, and extreme values. Annual precipitation and temperature are somewhat underdispersed, and precipitation spell statistics are negatively biased by 1‐2 days. For simulations of future climate, the model can generate a range of Clausius‐Clapeyron scaling relationships and modes of elevation‐dependent warming. Model simulations also suggest a muted response of Tuolumne climate to changes in ENSO variability.
more »
« less
How Moist and Dry Intrusions Control the Local Hydrologic Cycle in Present and Future Climates
Abstract Models disagree on how much the hydrologic cycle could intensify under climate change. These changes are expected to scale with the Clausius-Clapeyron relation but may locally diverge due in part to the uncertain response of the general circulation, causing the hydrologic cycle to inherit this uncertainty. To identify how the circulation contributes, we link circulation changes to changes in the higher moments of the hydrologic cycle using the novel dynamical framework of the local hydrologic cycle, the portion of the hydrologic cycle driven by moist or dry intrusions. We expand this dynamical framework, developing a closed budget which diagnoses thermodynamic, advective, and overturning contributions to future hydrologic cycle changes. In analyzing these changes for the Community Earth System Model Large Ensemble, we show that overturning is the main dynamic contributor to the tropical and subtropical annual response, consistent with a weakening of this circulation. In the extratropics, we show that advective contributions, likely from storm track changes, dominate the response. We achieve a cleaner separation between dynamic and thermodynamic contributions through a semi-empirical scaling, which reveals the robustness of the Clausius-Clapeyron scaling for the local hydrologic cycle. This scaling also demonstrates the slowing of the local hydrologic cycle and how changing subtropical dynamics asymmetrically impact wave breaking and suppress meridional moisture transport. We conclude that dynamic changes in the subtropics are predominantly responsible for the annual, dynamic response in the extratropics and thus a significant contributor to uncertainty in future projections.
more »
« less
- Award ID(s):
- 1813981
- PAR ID:
- 10220955
- Date Published:
- Journal Name:
- Journal of Climate
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 1 to 56
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Weather regime based stochastic weather generators (WR‐SWGs) have recently been proposed as a tool to better understand multi‐sector vulnerability to deeply uncertain climate change. WR‐SWGs can distinguish and simulate different types of climate change that have varying degrees of uncertainty in future projections, including thermodynamic changes (e.g., rising temperatures, Clausius‐Clapeyron scaling of extreme precipitation) and dynamic changes (e.g., shifting circulation and storm tracks). These models require the accurate identification of WRs that are representative of both historical and plausible future patterns of atmospheric circulation, while preserving the complex space–time variability of weather processes. This study proposes a novel framework to identify such WRs based on WR‐SWG performance over a broad geographic area and applies this framework to a case study in California. We test two components of WR‐SWG design, including the method used for WR identification (Hidden Markov Models (HMMs) vs.K‐means clustering) and the number of WRs. For different combinations of these components, we assess performance of a multi‐site WR‐SWG using 14 metrics across 13 major California river basins during the cold season. Results show that performance is best using a small number of WRs (4–5) identified using an HMM. We then juxtapose the number of WRs selected based on WR‐SWG performance against the number of regimes identified using metastability analysis of atmospheric fields. Results show strong agreement in the number of regimes between the two approaches, suggesting that the use of metastable regimes could inform WR‐SWG design. We conclude with a discussion of the potential to expand this framework for additional WR‐SWG design parameters and spatial scales.more » « less
-
Abstract We examine the influence of convective organization on extreme tropical precipitation events using model simulation data from the Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP). At a given SST, simulations with convective organization have more intense precipitation extremes than those without it at all scales, including instantaneous precipitation at the grid resolution (3 km). Across large‐domain simulations with convective organization, models with explicit convection exhibit better agreement in the response of extreme precipitation rates to warming than those with parameterized convection. Among models with explicit convection, deviations from the Clausius‐Clapeyron scaling of precipitation extremes with warming are correlated with changes in organization, especially on large spatiotemporal scales. Though the RCEMIP ensemble is nearly evenly split between CRMs which become more and less organized with warming, most of the models which show increased organization with warming also allow super‐CC scaling of precipitation extremes. We also apply an established precipitation extremes scaling to understand changes in the extreme condensation events leading to extreme precipitation. Increased organization leads to greater increases in precipitation extremes by enhancing both the dynamic and implied efficiency contributions. We link these contributions to environmental variables modified by the presence of organization and suggest that increases in moisture in the aggregated region may be responsible for enhancing both convective updraft area fraction and precipitation efficiency. By leveraging a controlled intercomparison of models with both explicit and parameterized convection, this work provides strong evidence for the amplification of tropical precipitation extremes and their response to warming by convective organization.more » « less
-
We explore the relative roles of Earth’s axial tilt (‘tilt effect’) and orbital eccentricity (‘distance effect’) in generating the seasonal cycle of tropical sea surface temperature (SST), decomposing the two contributions using simulations of an Earth System model varying eccentricity and longitude of perihelion. Tropical SST seasonality is largely explained by the annual contribution from tilt, but with significant contributions from the semiannual contribution from tilt and annual contribution from distance, especially in regions where the tilt annual contribution is relatively small. Precessional changes to tropical SST seasonality are readily explained by the distance annual component whose amplitude increases linearly with eccentricity and whose phase changes linearly with the longitude of perihelion, while the tilt contributions remain essentially unchanged. As such, the annual cycle contribution from distance can become significant at high eccentricity (e > 0.05) and dominate the SST annual cycle in some regions of the Tropics. The annual cycle tropical SST response to the distance effect consists of a tropics-wide warming peaking ∼2 months after perihelion consistent with a direct thermodynamic effect, and a dynamic contribution characterized by a cooling of the Pacific cold tongue peaking 5-6 months after perihelion. For current orbital conditions, the thermodynamic contribution acts to dampen the tropical SST seasonal cycle of the northern hemisphere from the tilt influence and amplify it in the southern hemisphere. The dynamic contribution acts to shift the Pacific cold tongue seasonal cycle arising from tilt to earlier in the season, by ∼1 month.more » « less
-
The response of atmospheric heat transport to anthropogenic warming is determined by the anomalous meridional energy gradient. Feedback analysis offers a characterization of that gradient and hence reveals how uncertainty in physical processes may translate into uncertainty in the circulation response. However, individual feedbacks do not act in isolation. Anomalies associated with one feedback may be compensated by another, as is the case for the positive water vapor and negative lapse rate feedbacks in the tropics. Here a set of idealized experiments are performed in an aquaplanet model to evaluate the coupling between the surface albedo feedback and other feedbacks, including the impact on atmospheric heat transport. In the tropics, the dynamical response manifests as changes in the intensity and structure of the overturning Hadley circulation. Only half of the range of Hadley cell weakening exhibited in these experiments is found to be attributable to imposed, systematic variations in the surface albedo feedback. Changes in extratropical clouds that accompany the albedo changes explain the remaining spread. The feedback-driven circulation changes are compensated by eddy energy flux changes, which reduce the overall spread among experiments. These findings have implications for the efficiency with which the climate system, including tropical circulation and the hydrological cycle, adjusts to high-latitude feedbacks over climate states that range from perennial or seasonal ice to ice-free conditions in the Arctic.more » « less
An official website of the United States government

