skip to main content


Title: Recent Advances in Luminescent Zero‐Dimensional Organic Metal Halide Hybrids
Abstract

Organic metal halide hybrids (OMHHs) have attracted great research attention owing to their exceptional structure and property tunability. Using appropriate organic and inorganic metal halide components, OMHHs with controlled dimensionalities at the molecular level, from 3D to 2D, 1D, and 0D structures, can be obtained. In 0D OMHHs, anionic metal halide polyhedrons are surrounded and completely isolated by organic cations to form single crystalline “host–guest” structures. These ionically bonded organic–inorganic hybrid systems often exhibit the intrinsic properties of individual metal halide species, for instance, highly efficient Stokes‐shifted broadband emissions. In this progress report, the recent advances in the development and study of luminescent 0D OMHHs are discussed: from synthetic structural control to fundamental understanding of the structure–property relationship and device integration.

 
more » « less
Award ID(s):
1709116
NSF-PAR ID:
10446380
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
9
Issue:
18
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Low‐dimensional (low‐D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low‐D OMHHs, especially the zero‐D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near‐unity photoluminescence quantum yield (PLQY) at around 6.0 GPa in a 0D OMHH, [(C6H5)4P]2SbCl5.In situexperimental characterizations and theoretical simulations reveal that the pressure‐induced electronic coupling between the lone‐pair electrons of Sb3+and the π electrons of benzene ring (lp‐π interaction) serves as an unexpected “bridge” for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp‐π interactions in organic–inorganic hybrid systems.

     
    more » « less
  2. Abstract

    Low‐dimensional (low‐D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low‐D OMHHs, especially the zero‐D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near‐unity photoluminescence quantum yield (PLQY) at around 6.0 GPa in a 0D OMHH, [(C6H5)4P]2SbCl5.In situexperimental characterizations and theoretical simulations reveal that the pressure‐induced electronic coupling between the lone‐pair electrons of Sb3+and the π electrons of benzene ring (lp‐π interaction) serves as an unexpected “bridge” for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp‐π interactions in organic–inorganic hybrid systems.

     
    more » « less
  3. Abstract

    Zero‐dimensional (0D) organic metal halide hybrids (OMHHs) have recently emerged as a new class of light emitting materials with exceptional color tunability. While near‐unity photoluminescence quantum efficiencies (PLQEs) are routinely obtained for a large number of 0D OMHHs, it remains challenging to apply them as emitter for electrically driven light emitting diodes (LEDs), largely due to the low conductivity of wide bandgap organic cations. Here, the development of a new OMHH, triphenyl(9‐phenyl‐9H‐carbazol‐3‐yl) phosphonium antimony bromide (TPPcarzSbBr4), as emitter for efficient LEDs, which consists of semiconducting organic cations (TPPcarz+) and light emitting antimony bromide anions (Sb2Br82−), is reported. By replacing one of the phenyl groups in a well‐known tetraphenylphosphonium cation (TPP+) with an electroactive phenylcarbazole group, a semiconducting TPPcarz+cation is developed for the preparation of red emitting 0D TPPcarzSbBr4single crystals with a high PLQE of 93.8%. With solution processed TPPcarzSbBr4thin films (PLQE of 86.1%) as light emitting layer, red LEDs are fabricated to exhibit an external quantum efficiency (EQE) of 5.12%, a peak luminance of 5957 cd m−2, and a current efficiency of 14.2 cd A−1, which are the best values reported to date for electroluminescence devices based on 0D OMHHs.

     
    more » « less
  4. Abstract

    Mechanochemical synthesis has emerged as a facile method for the preparation of a wide range of organic, inorganic, and polymeric materials. Here, we report the use of mechanochemical synthesis for the preparation of ionically bonded organic metal halide hybrids with a zero‐dimensional (0D) structure at the molecular level. (Ph4P)2SbCl5and (Ph4P)2MnCl4were synthesized by grinding appropriate ratios of organic halide salt Ph4PCl with inorganic metal halide salts SbCl3and MnCl2, respectively. The structural and photophysical properties of mechanochemically synthesized (Ph4P)2SbCl5and (Ph4P)2MnCl4were characterized, which are almost identical to those of single crystals prepared by slow solution growth. By reacting Ph4PCl with both SbCl3and MnCl2, we have been able to produce a mixture of two 0D organic metal halide hybrids that exhibit a dual emission covering a wide range of the spectrum with Commission Internationale de l'Eclairage (CIE) coordinates of (0.4898, 0.4800). Our work has clearly established mechanochemical synthesis as an effective method to produce ionically bonded organic‐inorganic hybrids.

     
    more » « less
  5. Abstract

    Scintillators, one of the essential components in medical imaging and security checking devices, rely heavily on rare‐earth‐containing inorganic materials. Here, a new type of organic‐inorganic hybrid scintillators containing earth abundant elements that can be prepared via low‐temperature processes is reported. With room temperature co‐crystallization of an aggregation‐induced emission (AIE) organic halide, 4‐(4‐(diphenylamino) phenyl)‐1‐(propyl)‐pyrindin‐1ium bromide (TPA‐PBr), and a metal halide, zinc bromide (ZnBr2), a zero‐dimensional (0D) organic metal halide hybrid (TPA‐P)2ZnBr4with a yellowish‐green emission peaked at 550 nm has been developed. In this hybrid material, dramatically enhanced X‐ray scintillation of TPA‐P+is achieved via the sensitization by ZnBr42−. The absolute light yield (14,700 ± 800 Photons/MeV) of (TPA‐P)2ZnBr4is found to be higher than that of anthracene (≈13,500 Photons/MeV), a well‐known organic scintillator, while its X‐ray absorption is comparable to those of inorganic scintillators. With TPA‐P+as an emitting center, short photoluminescence and radioluminescence decay lifetimes of 3.56 and 9.96 ns have been achieved. Taking the advantages of high X‐ray absorption of metal halides and efficient radioluminescence with short decay lifetimes of organic cations, the material design paves a new pathway to address the issues of low X‐ray absorption of organic scintillators and long decay lifetimes of inorganic scintillators simultaneously.

     
    more » « less