Abstract Carbon isotope biosignatures preserved in the Precambrian geologic record are primarily interpreted to reflect ancient cyanobacterial carbon fixation catalyzed by Form I RuBisCO enzymes. The average range of isotopic biosignatures generally follows that produced by extant cyanobacteria. However, this observation is difficult to reconcile with several environmental (e.g., temperature, pH, and CO2concentrations), molecular, and physiological factors that likely would have differed during the Precambrian and can produce fractionation variability in contemporary organisms that meets or exceeds that observed in the geologic record. To test a specific range of genetic and environmental factors that may impact ancient carbon isotope biosignatures, we engineered a mutant strain of the model cyanobacteriumSynechococcus elongatusPCC 7942 that overexpresses RuBisCO across varying atmospheric CO2concentrations. We hypothesized that changes in RuBisCO expression would impact the net rates of intracellular CO2fixation versus CO2supply, and thus whole‐cell carbon isotope discrimination. In particular, we investigated the impacts of RuBisCO overexpression under changing CO2concentrations on both carbon isotope biosignatures and cyanobacterial physiology, including cell growth and oxygen evolution rates. We found that an increased pool of active RuBisCO does not significantly affect the13C/12C isotopic discrimination (εp) at all tested CO2concentrations, yielding εpof ≈ 23‰ for both wild‐type and mutant strains at elevated CO2. We therefore suggest that expected variation in cyanobacterial RuBisCO expression patterns should not confound carbon isotope biosignature interpretation. A deeper understanding of environmental, evolutionary, and intracellular factors that impact cyanobacterial physiology and isotope discrimination is crucial for reconciling microbially driven carbon biosignatures with those preserved in the geologic record. 
                        more » 
                        « less   
                    
                            
                            The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution
                        
                    
    
            Abstract The oldest and most wide-ranging signal of biological activity (biosignature) on our planet is the carbon isotope composition of organic materials preserved in rocks. These biosignatures preserve the long-term evolution of the microorganism-hosted metabolic machinery responsible for producing deviations in the isotopic compositions of inorganic and organic carbon. Despite billions of years of ecosystem turnover, evolutionary innovation, organismic complexification, and geological events, the organic carbon that is a residuum of the global marine biosphere in the rock record tells an essentially static story. The ~25‰ mean deviation between inorganic and organic 13C/12C values has remained remarkably unchanged over >3.5 billion years. The bulk of this record is conventionally attributed to early-evolved, RuBisCO-mediated CO2 fixation that, in extant oxygenic phototrophs, produces comparable isotopic effects and dominates modern primary production. However, billions of years of environmental transition, for example, in the progressive oxygenation of the Earth’s atmosphere, would be expected to have accompanied shifts in the predominant RuBisCO forms as well as enzyme-level adaptive responses in RuBisCO CO2-specificity. These factors would also be expected to result in preserved isotopic signatures deviating from those produced by extant RuBisCO in oxygenic phototrophs. Why does the bulk carbon isotope record not reflect these expected environmental transitions and evolutionary innovations? Here, we discuss this apparent discrepancy and highlight the need for greater quantitative understanding of carbon isotope fractionation behavior in extant metabolic pathways. We propose novel, laboratory-based approaches to reconstructing ancestral states of carbon metabolisms and associated enzymes that can constrain isotopic biosignature production in ancient biological systems. Together, these strategies are crucial for integrating the complementary toolsets of biological and geological sciences and for interpretation of the oldest record of life on Earth. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10221318
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The ISME Journal
- Volume:
- 15
- Issue:
- 8
- ISSN:
- 1751-7362
- Format(s):
- Medium: X Size: p. 2183-2194
- Size(s):
- p. 2183-2194
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Anthropogenic carbon dioxide (CO2) release in the atmosphere from fossil fuel combustion has inspired scientists to study CO2 to fuel conversion. Oxygenic phototrophs such as cyanobacteria have been used to produce biofuels using CO2. However, oxygen generation during oxygenic photosynthesis affects biofuel production efficiency. To produce n-butanol (biofuel) from CO2, here we introduced an n-butanol biosynthesis pathway into an anoxygenic (non-oxygen evolving) photoautotroph, Rhodopseudomonas palustris TIE-1 (TIE-1). Using different carbon, nitrogen, and electron sources, we achieved n-butanol production in wild-type TIE-1 and mutants lacking electron-consuming (nitrogen-fixing) or acetyl-CoA-consuming (polyhydroxybutyrate and glycogen synthesis) pathways. The mutant lacking the nitrogen-fixing pathway produced highest n-butanol. Coupled with novel hybrid bioelectrochemical platforms, this mutant produced nbutanol using CO2, solar panel-generated electricity, and light, with high electrical energy conversion efficiency. Overall, this approach showcases TIE-1 as an attractive microbial chassis for carbon-neutral n-butanol bioproduction using sustainable, renewable, and abundant resources.more » « less
- 
            As we look for traces of ancient life on Mars, we need to consider the impact of ionizing radiation in the biosignature preservation process. Here, we irradiated two organic rich terrestrial samples (Enspel and Messel shales) that have Martian analog mineralogies, with simulated cosmic rays to a dose of 0.9 MGy, equivalent of 15 million years of radiation exposure on the Martian surface. We compared a range of biosignatures before and after exposure, including total organic carbon, bulk stable carbon isotope ratios, diagnostic lipid biomarkers (hopanes and steranes), and Raman signatures akin to those collected by the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument on Perseverance. While we did not observe a significant difference in total organic carbon, bulk stable carbon isotopes, or Raman G-band signatures, we found that five lipid biomarkers decreased by a factor of two to three in the Enspel shale. This degree of degradation exceeds current predictions by existing models or experimental studies in organic rich samples and challenges our current understanding of complex biosignatures under ionizing irradiation.more » « less
- 
            Abstract Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post‐depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturationin situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth‐based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite—each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (μm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.more » « less
- 
            Abstract Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
