skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Human microsporidian pathogen Encephalitozoon intestinalis impinges on enterocyte membrane trafficking and signaling
ABSTRACT Microsporidia are a large phylum of obligate intracellular parasites. Approximately a dozen species of microsporidia infect humans, where they are responsible for a variety of diseases and occasionally death, especially in immunocompromised individuals. To better understand the impact of microsporidia on human cells, we infected human colonic Caco2 cells with Encephalitozoon intestinalis , and showed that these enterocyte cultures can be used to recapitulate the life cycle of the parasite, including the spread of infection with infective spores. Using transmission electron microscopy, we describe this lifecycle and demonstrate nuclear, mitochondrial and microvillar alterations by this pathogen. We also analyzed the transcriptome of infected cells to reveal host cell signaling alterations upon infection. These high-resolution imaging and transcriptional profiling analysis shed light on the impact of the microsporidial infection on its primary human target cell type. This article has an associated First Person interview with the first authors of the paper.  more » « less
Award ID(s):
1952823
PAR ID:
10221341
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Cell Science
Volume:
134
Issue:
5
ISSN:
0021-9533
Page Range / eLocation ID:
jcs253757
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper develops a mathematical model to investigate the Human Immunodeficiency Virus (HIV) infection dynamics. The model includes two transmission modes (cell-to-cell and cell-free), two adaptive immune responses (cytotoxic T-lymphocyte (CTL) and antibody), a saturated CTL immune response, and latent HIV infection. The existence and local stability of equilibria are fully characterized by four reproduction numbers. Through sensitivity analyses, we assess the partial rank correlation coefficients of these reproduction numbers and identify that the infection rate via cell-to-cell transmission, the number of new viruses produced by each infected cell during its life cycle, the clearance rate of free virions, and immune parameters have the greatest impact on the reproduction numbers. Additionally, we compare the effects of immune stimulation and cell-to-cell spread on the model’s dynamics. The findings highlight the significance of adaptive immune responses in increasing the population of uninfected cells and reducing the numbers of latent cells, infected cells, and viruses. Furthermore, cell-to-cell transmission is identified as a facilitator of HIV transmission. The analytical and numerical results presented in this study contribute to a better understanding of HIV dynamics and can potentially aid in improving HIV management strategies. 
    more » « less
  2. ABSTRACT The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a large double-stranded DNA (dsDNA) virus that encodes approximately 156 genes and is highly pathogenic to a variety of larval lepidopteran insects in nature. Oral infection of larval midgut cells is initiated by the occlusion-derived virus (ODV), while secondary infection of other tissues is mediated by the budded virus (BV). Global viral gene expression has been studied in detail in BV-infected cell cultures, but studies of ODV infection in the larval midgut are limited. In this study, we examined expression of the ∼156 AcMNPV genes in Trichoplusia ni midgut tissue using a transcriptomic approach. We analyzed expression profiles of viral genes in the midgut and compared them with profiles from a T. ni cell line (Tnms42). Several viral genes ( p6.9 , orf76 , orf75 , pp31 , Ac-bro , odv-e25 , and odv-ec27 ) had high expression levels in the midgut throughout the infection. Also, the expression of genes associated with occlusion bodies ( polh and p10 ) appeared to be delayed in the midgut in comparison with the cell line. Comparisons of viral gene expression profiles revealed remarkable similarities between the midgut and cell line for most genes, although substantial differences were observed for some viral genes. These included genes associated with high level BV production ( fp-25k ), acceleration of systemic infection ( v-fgf ), and enhancement of viral movement ( arif-1/orf20 ). These differential expression patterns appear to represent specific adaptations for virus infection and transmission through the polarized cells of the lepidopteran midgut. IMPORTANCE Baculoviruses such as AcMNPV are pathogens that are natural regulators of certain insect populations. Baculovirus infections are biphasic, with a primary phase initiated by oral infection of midgut epithelial cells by occlusion-derived virus (ODV) virions and a secondary phase in which other tissues are infected by budded-virus (BV) virions. While AcMNPV infections in cultured cells have been studied extensively, comparatively little is known regarding primary infection in the midgut. In these studies, we identified gene expression patterns associated with ODV-mediated infection of the midgut in Trichoplusia ni and compared those results with prior results from BV-infected cultured cells, which simulate secondary infection. These studies provide a detailed analysis of viral gene expression patterns in the midgut, which likely represent specific viral strategies to (i) overcome or avoid host defenses in the gut and (ii) rapidly move infection from the midgut, into the hemocoel to facilitate systemic infection. 
    more » « less
  3. Herpes simplex virus type 1 (HSV-1) is a lifelong pathogen characterized by asymptomatic latent infection in the trigeminal ganglia (TG), with periodic outbreaks of cold sores caused by virus reactivation in the TG and subsequent replication in the oral mucosa. While antiviral therapies can provide relief from cold sores, they are unable to eliminate HSV-1. We provide experimental results that highlight non-thermal plasma (NTP) as a new alternative therapy for HSV-1 infection that would resolve cold sores faster and reduce the establishment of latent infection in the TG. Additionally, this study is the first to explore the use of NTP as a therapy that can both treat and prevent human viral infections. The antiviral effect of NTP was investigated using an in vitro model of HSV-1 epithelial infection that involved the application of NTP from two separate devices to cell-free HSV-1, HSV-1-infected cells, and uninfected cells. It was found that NTP reduced the infectivity of cell-free HSV-1, reduced viral replication in HSV-1-infected cells, and diminished the susceptibility of uninfected cells to HSV-1 infection. This triad of antiviral mechanisms of action suggests the potential of NTP as a therapeutic agent effective against HSV-1 infection. 
    more » « less
  4. Pujol, Nathalie; Sinkins, Steven P (Ed.)
    ABSTRACT The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont ofDaphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont isOrdospora pajunii, a newly described microsporidian parasite ofDaphnia. We show thatO. pajuniiinfection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North AmericanO. pajuniiwere able to infect multipleDaphniaspecies, including the European speciesDaphnia longispina, as well asCeriodaphniaspp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, thisDaphnia–O. pajuniisymbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCEThe net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to itsDaphniahosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidiumOrdospora pajunii. Despite the parasitic nature of microsporidia, we foundO. pajuniito be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establishO. pajuniiis a valuable model for investigating shifts along the mutualism-parasitism continuum. 
    more » « less
  5. Previously, we found that Ureaplasma parvum internalised into HeLa cells and cyto- solic accumulation of galectin-3. U. parvum induced the host cellular membrane dam- age and survived there. Here, we conducted vesicular trafficking inhibitory screening in yeast to identify U. parvum vacuolating factor (UpVF). U. parvum triggered endo- plasmic reticulum (ER) stress and upregulated the unfolded protein response-related factors, including BiP, P-eIF2 and IRE1 in the host cells, but it blocked the induction of the downstream apoptotic factors. MicroRNA library screening of U. parvum- infected cells and UpVF-transfected cells identified miR-211 and miR-214 as the negative regulators of the apoptotic cascade under ER stress. Transient expression of UpVF induced HeLa cell death with intracellular vacuolization; however, some stable UpVF transformant survived. U. parvum-infected cervical cell lines showed resistance to actinomycin D, and UpVF stable transformant cell lines exhibited resistance to X- ray irradiation, as well as cisplatin and paclitaxel. UpVF expressing cervical cancer xenografts in nude mice also acquired resistance to cisplatin and paclitaxel. A myco- plasma expression vector based on Mycoplasma mycoides, Syn-MBA (multiple banded antigen)-UpVF, reduced HeLa cell survival compared with that of Syn-MBA after 72 hr of infection. These findings together suggest novel mechanisms for Ureaplasma infection and the possible implications for cervical cancer malignancy. 
    more » « less