MAPK signaling modules play crucial roles in regulating numerous biological processes in all eukaryotic cells. How MAPK signaling specificity and strength are tightly controlled remains a major challenging question. In
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Arabidopsis stomatal development, the MAPKK Kinase YODA (YDA) functions at the cell periphery to inhibit stomatal production by activating MAPK 3 and 6 (MPK3/6) that directly phosphorylate stomatal fate-determining transcription factors for degradation in the nucleus. Recently, we demonstrated that BSL1, one of the four BSL protein phosphatases, localizes to the cell cortex to activate YDA, elevating MPK3/6 activity to suppress stomatal formation. Here, we showed that at the plasma membrane, all four members of BSL proteins contribute to the YDA activation. However, in the nucleus, specific BSL members (BSL2, BSL3, and BSU1) directly deactivate MPK6 to counteract the linear MAPK pathway, thereby promoting stomatal formation. Thus, the pivotal MAPK signaling in stomatal fate determination is spatially modulated by a signaling dichotomy of the BSL protein phosphatases inArabidopsis , providing a prominent example of how MAPK activities are integrated and specified by signaling compartmentalization at the subcellular level. -
Abstract Cell polarity is a fundamental feature underlying cell morphogenesis and organismal development. In the
Arabidopsis stomatal lineage, the polarity protein BASL controls stomatal asymmetric cell division. However, the cellular machinery by which this intrinsic polarity site is established remains unknown. Here, we identify the PRAF/RLD proteins as BASL physical partners and mutating fourPRAF members leads to defects in BASL polarization. Members of PRAF proteins are polarized in stomatal lineage cells in a BASL-dependent manner. Developmental defects of thepraf mutants phenocopy those of thegnom mutants. GNOM is an activator of the conserved Arf GTPases and plays important roles in membrane trafficking. We further find PRAF physically interacts with GNOM in vitro and in vivo. Thus, we propose that the positive feedback of BASL and PRAF at the plasma membrane and the connected function of PRAF and GNOM in endosomal trafficking establish intrinsic cell polarity in theArabidopsis stomatal lineage. -
Summary In the leaf epidermis, stomatal pores allow gas exchange between plants and the environment. The production of stomatal guard cells requires the lineage cells to divide asymmetrically. In this Insight review, we describe an emerging picture of how intrinsic molecules drive stomatal asymmetric cell division in multidimensions, from transcriptional activities in the nucleus to the dynamic assembly of the polarity complex at the cell cortex. Given the significant roles of stomatal activity in plant responses to environmental changes, we incorporate recent advances in external cues feeding into the regulation of core molecular machinery required for stomatal development. The work we discuss here is mainly based on the dicot plant
Arabidopsis thaliana with summaries of recent progress in the monocots. -
Abstract A number of studies have examined the effects of 1,25‐dihydroxyvitamin D3(1,25(OH)2D3) on intestinal inflammation driven by immune cells, while little information is currently available about its impact on inflammation caused by intestinal epithelial cell (IEC) defects. Mice lacking IEC‐specific
Rab11a a recycling endosome small GTPase resulted in increased epithelial cell production of inflammatory cytokines, notably IL‐6 and early onset of enteritis. To determine whether vitamin D supplementation may benefit hosts with epithelial cell‐originated mucosal inflammation, we evaluated in vivo effects of injected 1,25(OH)2D3or dietary supplement of a high dose of vitamin D on the gut phenotypes of IEC‐specificRab11a knockout mice (Rab11a ΔIEC ). 1,25(OH)2D3administered at 25 ng, two doses per mouse, by intraperitoneal injection, reduced inflammatory cytokine production in knockout mice compared to vehicle‐injected mice. Remarkably, feeding mice with dietary vitamin D supplementation at 20,000 IU/kg spanning fetal and postnatal developmental stages led to improved bodyweights, reduced immune cell infiltration, and decreased inflammatory cytokines. We found that these vitamin D effects were accompanied by decreased NF‐κB (p65) in the knockout intestinal epithelia, reduced tissue‐resident macrophages, and partial restoration of epithelial morphology. Our study suggests that dietary vitamin D supplementation may prevent and limit intestinal inflammation in hosts with high susceptibility to chronic inflammation. -
Free, publicly-accessible full text available June 1, 2025
-
Abstract This paper presents a software-hardware integrated approach to high-speed large-range dynamic mode imaging of atomic force microscope (AFM). High speed AFM imaging is needed to interrogate dynamic processes at nanoscale such as cellular interactions and polymer crystallization process. High-speed dynamic-modes such as tapping-mode AFM imaging is challenging as the probe tapping motion is sensitive to the highly nonlinear probe-sample interaction during the imaging process. The existing hardware-based approach via bandwidth enlargement, however, results in a substantially reduction of imaging area that can be covered. Contrarily, control (algorithm)-based approach, for example, the recently developed adaptive multiloop mode (AMLM) technique, has demonstrated its efficacy in increasing the tapping-mode imaging speed without loss of imaging size. Further improvement, however, has been limited by the hardware bandwidth and online signal processing speed and computation complexity.Thus, in this paper, the AMLM technique is further enhanced to optimize the probe tapping regulation and integrated with a field programmable gate array (FPGA) platform to further increase the imaging speed without loss of imaging quality and range. Experimental implementation of the proposed approach demonstrates that the high-quality imaging can be achieved at a high-speed scanning rate of 100 Hz and higher, and over a large imaging area of over 20 µm.more » « less