Abstract We study the Brownian motion on the non-compact Grassmann manifold $$\frac {\textbf {U}(n-k,k)} {\textbf {U}(n-k)\textbf {U}(k)}$$ and some of its functionals. The key point is to realize this Brownian motion as a matrix diffusion process, use matrix stochastic calculus and take advantage of the hyperbolic Stiefel fibration to study a functional that can be understood in that setting as a generalized stochastic area process. In particular, a connection to the generalized Maass Laplacian of the complex hyperbolic space is presented and applications to the study of Brownian windings in the Lie group $$\textbf {U}(n-k,k)$$ are then given.
more »
« less
Quaternionic Brownian Windings
We define and study the three-dimensional windings along Brownian paths in the quaternionic Euclidean, projective and hyperbolic spaces. In particular, the asymp- totic laws of these windings are shown to be Gaussian for the flat and spherical geometries while the hyperbolic winding exhibits a different long time-behavior. The corresponding asymptotic law seems to be new and is related to the Cauchy relativistic distribution.
more »
« less
- PAR ID:
- 10221362
- Date Published:
- Journal Name:
- Journal of Theoretical Probability
- ISSN:
- 0894-9840
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A multi-phase (MP) combined winding design procedure for bearingless machines is proposed and developed. Using this procedure, new bearingless motor windings can be designed and conventional motor designs with MP windings can be transformed into bearingless motors by simply modifying the phase currents. The resulting MP winding is excited by two current components – one responsible for torque creation and another for suspension force creation. By applying the appropriate Clarke transformation, independent control of force and torque can be achieved. Although there are numerous papers in the literature studying bearingless machines with MP windings and their advantages, this is the first paper to provide a formal design procedure that can be applied to any MP winding configuration. The proposed approach can be used to realize popular winding designs, including concentrated- and fractional-slot windings. The paper uses the Maxwell stress tensor to formulate the force/torque model for the MP combined winding and uses the results to derive design requirements for the MP combined winding. A sequence of winding design steps is proposed and used to design example MP combined windings.more » « less
-
A generalized multi-phase (MP) combined winding design procedure for bearingless machines is proposed and devel- oped. Using this procedure, new bearingless motor windings can be designed and conventional motor designs with MP windings can be transformed into bearingless motors by simply modifying the phase currents. The resulting MP winding is excited by two current components – one responsible for torque creation and an- other for suspension force creation. By applying the appropriate Clarke transformation, independent control of force and torque can be achieved. Although there are numerous papers in the literature studying bearingless machines with MP windings and their advantages, this is the first paper to provide a formal design procedure that can be applied to any MP winding configuration. The proposed approach can be used to realize popular winding designs, including concentrated- and fractional-slot windings, and is applicable to all radial-flux bearingless machines. The paper uses the Maxwell stress tensor to formulate the force/torque model for the MP combined winding and uses the results to derive design requirements. A sequence of winding design steps is proposed and used to design example MP combined windings. Experimental validation is provided using a six-phase bearingless induction machine prototype.more » « less
-
Coreless axial-flux permanent-magnet (AFPM) machines may be attractive options for high-speed and high-power density applications due to the elimination of core losses. In order to make full use of the advantages offered by these machines and avoid excessive eddy current losses in windings, advanced technologies for winding conductors need to be employed to suppress the eddy effect, such as the Litz wire and printed circuit board (PCB). In this paper, the best practices for designing Litz wire/PCB windings are discussed and a brief survey of state of the art PCB winding technology is provided. Three coreless AFPM machines are mainly considered. A design optimization procedure based on the multi-objective differential evolution algorithm and 3-dimensional (3D) finite element analysis (FEA) is proposed to take into account the ac winding losses of Litz wires and PCB traces in the machine design stage. Selected designs are being prototyped and will be tested with a customized test fixture.more » « less
-
This study examines how fast rise times, which are common in modern power electronics and drive systems, affect the aging of electric machine windings. It focuses on how to ensure these windings can last longer and work reliably in electrical systems. A twisted pair magnet wire with insulation commonly used in wound machines was used to get experimental data to understand how different voltage waveforms can influence endurance testing of motor insulation systems powered by inverters. Unlike past studies that looked at comparatively slower rise times and fewer repetitions, this research specifically addresses the challenges posed by next-generation wide bandgap (WBG)-based conversion systems. These systems operate at very high speeds, up to 100 kV/μs, and switch frequencies up to 500 kHz, where both frequency and rise time are crucial factors affecting insulation aging over time.more » « less
An official website of the United States government

