skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quaternionic Brownian Windings
We define and study the three-dimensional windings along Brownian paths in the quaternionic Euclidean, projective and hyperbolic spaces. In particular, the asymp- totic laws of these windings are shown to be Gaussian for the flat and spherical geometries while the hyperbolic winding exhibits a different long time-behavior. The corresponding asymptotic law seems to be new and is related to the Cauchy relativistic distribution.  more » « less
Award ID(s):
1901315 1855523
PAR ID:
10221362
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Theoretical Probability
ISSN:
0894-9840
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the Brownian motion on the non-compact Grassmann manifold $$\frac {\textbf {U}(n-k,k)} {\textbf {U}(n-k)\textbf {U}(k)}$$ and some of its functionals. The key point is to realize this Brownian motion as a matrix diffusion process, use matrix stochastic calculus and take advantage of the hyperbolic Stiefel fibration to study a functional that can be understood in that setting as a generalized stochastic area process. In particular, a connection to the generalized Maass Laplacian of the complex hyperbolic space is presented and applications to the study of Brownian windings in the Lie group $$\textbf {U}(n-k,k)$$ are then given. 
    more » « less
  2. A multi-phase (MP) combined winding design procedure for bearingless machines is proposed and developed. Using this procedure, new bearingless motor windings can be designed and conventional motor designs with MP windings can be transformed into bearingless motors by simply modifying the phase currents. The resulting MP winding is excited by two current components – one responsible for torque creation and another for suspension force creation. By applying the appropriate Clarke transformation, independent control of force and torque can be achieved. Although there are numerous papers in the literature studying bearingless machines with MP windings and their advantages, this is the first paper to provide a formal design procedure that can be applied to any MP winding configuration. The proposed approach can be used to realize popular winding designs, including concentrated- and fractional-slot windings. The paper uses the Maxwell stress tensor to formulate the force/torque model for the MP combined winding and uses the results to derive design requirements for the MP combined winding. A sequence of winding design steps is proposed and used to design example MP combined windings. 
    more » « less
  3. A generalized multi-phase (MP) combined winding design procedure for bearingless machines is proposed and devel- oped. Using this procedure, new bearingless motor windings can be designed and conventional motor designs with MP windings can be transformed into bearingless motors by simply modifying the phase currents. The resulting MP winding is excited by two current components – one responsible for torque creation and an- other for suspension force creation. By applying the appropriate Clarke transformation, independent control of force and torque can be achieved. Although there are numerous papers in the literature studying bearingless machines with MP windings and their advantages, this is the first paper to provide a formal design procedure that can be applied to any MP winding configuration. The proposed approach can be used to realize popular winding designs, including concentrated- and fractional-slot windings, and is applicable to all radial-flux bearingless machines. The paper uses the Maxwell stress tensor to formulate the force/torque model for the MP combined winding and uses the results to derive design requirements. A sequence of winding design steps is proposed and used to design example MP combined windings. Experimental validation is provided using a six-phase bearingless induction machine prototype. 
    more » « less
  4. Coreless axial-flux permanent-magnet (AFPM) machines may be attractive options for high-speed and high-power density applications due to the elimination of core losses. In order to make full use of the advantages offered by these machines and avoid excessive eddy current losses in windings, advanced technologies for winding conductors need to be employed to suppress the eddy effect, such as the Litz wire and printed circuit board (PCB). In this paper, the best practices for designing Litz wire/PCB windings are discussed and a brief survey of state of the art PCB winding technology is provided. Three coreless AFPM machines are mainly considered. A design optimization procedure based on the multi-objective differential evolution algorithm and 3-dimensional (3D) finite element analysis (FEA) is proposed to take into account the ac winding losses of Litz wires and PCB traces in the machine design stage. Selected designs are being prototyped and will be tested with a customized test fixture. 
    more » « less
  5. The increasing interest in employing wide-bandgap (WBG) drive systems has brought about very high power, high-frequency inverters enjoying switching frequencies up to hundreds of kilohertz. However, voltage surges with steep fronts, caused by turning semiconductor switches on/off in inverters, travel through the cable and are reflected at interfaces due to impedance mismatches, giving rise to overvoltages at motor terminals and in motor windings. The phenomena typically associated with these repetitive overvoltages are partial discharges and heating in the insulation system, both of which contribute to insulation system degradation and may lead to premature failures. In this article, taking the mentioned challenges into account, the repetitive transient overvoltage phenomenon in WBG drive systems is evaluated at motor terminals and in motor windings by implementing a precise multiconductor transmission line (MCTL) model in the time domain considering skin and proximity effects. In this regard, first, a finite element method (FEM) analysis is conducted in COMSOL Multiphysics to calculate parasitic elements of the motor; next, the vector fitting approach is employed to properly account for the frequency dependency of calculated elements, and, finally, the model is developed in EMTP-RV to assess the transient overvoltages at motor terminals and in motor windings. As shown, the harshest situation occurs in turns closer to motor terminals and/or turns closer to the neutral point depending on whether the neutral point is grounded or floating, how different phases are connected, and how motor phases are excited by pulse width modulation (PWM) voltages. 
    more » « less