skip to main content


Title: A Multiport Bidirectional LLC Resonant Converter for Grid-Tied Photovoltaic-Battery Hybrid System
Distributed power generation plants with combined photovoltaic (PV) systems and integrated energy storage for grid-connected applications have seen an increase in research interest in recent years. However, the combination of multiple energy sources requires numerous DC-DC converters and thus becomes more complex. To address this issue, a multiport bidirectional DC-DC LLC resonant converter for grid connected applications is presented in this research. In order to minimize the control complexity of the proposed system, a zone based controller approach with an integrated modified maximum power point tracking (MMPPT) method, which is based on the incremental conductance method, is also developed. This proposed controller is able to regulate the converter voltage and power flow while either delivering or taking power from the utility grid. The converter presented in this study contains a bidirectional buck-boost converter and an LLC resonant converter in addition to a voltage source grid-tied inverter which are interfacing the PV, the battery and the utility. Extensive simulation analyses through MATLAB/Simulink have proved the operations of the proposed topology.  more » « less
Award ID(s):
1939124
NSF-PAR ID:
10221381
Author(s) / Creator(s):
Date Published:
Journal Name:
International Journal of Renewable Energy Research
Volume:
10
Issue:
2
ISSN:
1309-0127
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, a new topology for grid-connected solar PV inverter is proposed. The proposed topology employs an LLC resonant converter with high frequency isolation transformer in the DC-DC stage. The DC-DC converter stage is controlled to generate a rectified sine wave voltage and current at the line frequency. An unfolder inverter interfaces between this DC stage and the grid. Both phase-shift and frequency control methods are used to control the LLC resonant converter. The switching frequency is determined depending on the phase-shift angle to extend the zero-voltage switching (ZVS) region. The transformer leakage and magnetization inductances are also properly designed to provide ZVS for wide operation area. The LLC converter operates in the ZVS region except the narrow band around the zero-crossings of the inverter output current. Since the LLC resonant converter has a high frequency transformer, the line frequency transformer requirement is eliminated, and thus more compact and efficient design is obtained. The proposed topology is validated by the simulation and experimental results. 
    more » « less
  2. This article proposes a matrix auto-transformer switched-capacitor dc–dc converter to achieve a high voltage conversion ratio, high efficiency, and high power density for 48-V data-center applications. On the high-voltage side, the proposed converter can fully leverage the benefits of high-performance low voltage stress devices similar to the multilevel modular switched-capacitor converter. Compared with the traditional isolated LLC converter with a matrix transformer, the proposed solution utilized a matrix autotransformer concept with merged primary and secondary side windings, thus leading to reduced transformer winding loss. The resonant inductor could be integrated into the transformer similar to the LLC converter. Because of the matrix autotransformer design, it can achieve a current doubler rectifier on the low voltage side. For less than 8-V low output voltage application, the current doubler rectifier design can fully utilize the best figure-of-merit 25-V device, which is more efficient than the full-bridge rectifier solution using two 25-V devices during the operation. All the devices can achieve zero voltage switching or zero current switching and can be naturally clamped without additional clamping circuits. A 500-W 48-V to 6-V dc–dc converter hardware prototype has been developed with optimized device selection and integrated matrix autotransformer design. Both simulation and experiment results have been provided to validate the features and benefits of the proposed converter. The maximum efficiency of the proposed converter can reach 98.33%. 
    more » « less
  3. The CLLC converter is widely used in the power electronic applications as a DC transformer, which can provide galvanic isolation, bidirectional power flow and an adjustable output voltage with the use of proper controls. As the most critical component in the CLLC converter, the high frequency (HF) transformer should be optimized according to the design targets, such as efficiency and power density. Starting with the analysis of the CLLC operating characteristics, this paper proposes a formal approach to design the HF transformer of a 100kW CLLC converter for a grid-tied application. The optimization method for the HF transformer is presented and the effect of the resonant inductor is analyzed. The optimized transformer is simulated with the finite element analysis (FEA) and Matlab/Simulink. 
    more » « less
  4. A three-port multilevel inverter with two DC ports and an AC port using Flying Capacitor Multilevel (FCML) design based on Gallium Nitride (GaN) switches is proposed in this paper. Recently, FCML inverter has shown a superior ability for power conversion with high power density, improved Total Harmonic Distortion (THD), and efficiency. The presented three-port multilevel inverter fits various applications such as battery and photovoltaic (PV) grid integration and standalone AC load. The proposed inverter is experimentally verified by building a 3-kW prototype using GaN switches which include two 4-level FCML converter paths, each share the same bus capacitor (C bus ), which links them together. One FCML path is 1 kW that incorporates an unfolder for the DC-to-AC conversion and has achieved a peak efficiency of 98.2% with AC voltage and current THDs of 1.26% and 1.23%, respectively. While the second FCML converter path is 2 kW used for the DC-to-DC conversion and has achieved a 99.43% peak efficiency. 
    more » « less
  5. Second-order ripples occur in the voltage and current during any DC–AC power conversion. These conversions occur in the voltage source inverters (VSIs), current source inverters (CSIs), and various single-stage inverters (SSIs) topologies. The second-order ripples lead to oscillating source node currents and DC bus voltages when there is an interconnection between the AC and DC microgrids or when an AC load is connected to the DC bus of the microgrid. Second-order ripples have various detrimental effects on the sources and the battery storage. In the storage battery, they lead to the depletion of electrodes. They also lead to stress in the converter or inverter components. This may lead to the failure of a component and hence affect the reliability of the system. Furthermore, the second-order ripple currents (SRCs) lead to ripple torque in wind turbines and lead to mechanical stress. SRCs cause a rise in the temperature of photovoltaic panels. An increase in the temperature of PV panels leads to a reduction in the power generated. Furthermore, the second-order voltage and current oscillations lead to a varying maximum power point in PV panels. Hence, the maximum power may not be extracted from it. To mitigate SRCs, oversizing of the components is needed. To improve the lifespan of the sources, storage, and converter components, the SRCs must be mitigated or kept within the desired limits. In the literature, different methodologies have been proposed to mitigate and regulate these second-order ripple components. This manuscript presents a comprehensive review of different effects of second-order ripples on different sources and the methodologies adopted to mitigate the ripples. Different active power decoupling methodologies, virtual impedance-based methodologies, pulse width modulation-based signal injection methodologies, and control methods adopted in distributed power generation methods for DC microgrids have been presented. The application of ripple control methods spans from single converters such as SSIs and VSIs to a network of interconnected converters. Furthermore, different challenges in the field of virtual impedance control and ripple mitigation in distributed power generation environments are discussed. This paper brings a review regarding control methodologies to mitigate and regulate second-order ripples in DC–AC conversions and microgrids. 
    more » « less