skip to main content

Title: AiRobSim: Simulating a Multisensor Aerial Robot for Urban Search and Rescue Operation and Training
Unmanned aerial vehicles (UAVs), equipped with a variety of sensors, are being used to provide actionable information to augment first responders’ situational awareness in disaster areas for urban search and rescue (SaR) operations. However, existing aerial robots are unable to sense the occluded spaces in collapsed structures, and voids buried in disaster rubble that may contain victims. In this study, we developed a framework, AiRobSim, to simulate an aerial robot to acquire both aboveground and underground information for post-disaster SaR. The integration of UAV, ground-penetrating radar (GPR), and other sensors, such as global navigation satellite system (GNSS), inertial measurement unit (IMU), and cameras, enables the aerial robot to provide a holistic view of the complex urban disaster areas. The robot-collected data can help locate critical spaces under the rubble to save trapped victims. The simulation framework can serve as a virtual training platform for novice users to control and operate the robot before actual deployment. Data streams provided by the platform, which include maneuver commands, robot states and environmental information, have potential to facilitate the understanding of the decision-making process in urban SaR and the training of future intelligent SaR robots.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. The Industrial Internet of Things has increased the number of sensors permanently installed in industrial plants. Yet there will be gaps in coverage due to broken sensors or sparce density in very large plants, such as in the petrochemical industry. Modern emergency response operations are beginning to use Small Unmanned Aerial Systems (sUAS) as remote sensors to provide rapid improved situational awareness. Ground-based sensors are an integral component of overall situational awareness platforms, as they can provide longer-term persistent monitoring that aerial drones are unable to provide. Squishy Robotics and the Berkeley Emergent Space Tensegrities Laboratory have developed hardware andmore »a framework for rapidly deploying sensor robots for integrated ground-aerial disaster response. The semi-autonomous delivery of sensors using tensegrity (tension-integrity) robotics uses structures that are flexible, lightweight, and have high stiffness-to-weight ratios, making them ideal candidates for robust high-altitude deployments. Squishy Robotics has developed a tensegrity robot for commercial use in Hazardous Materials (HazMat) scenarios that is capable of being deployed from commercial drones or other aircraft. Squishy Robots have been successfully deployed with a delicate sensing and communication payload of up to 1,000 ft. This paper describes the framework for optimizing the deployment of emergency sensors spatially over time. AI techniques (e.g., Long Short-Term Memory neural networks) identify regions where sensors would be most valued without requiring humans to enter the potentially dangerous area. The cost function for optimization considers costs of false-positive and false-negative errors. Decisions on mitigation include shutting down the plant or evacuating the local community. The Expected Value of Information (EVI) is used to identify the most valuable type and location of physical sensors to be deployed to increase the decision-analytic value of a sensor network. A case study using data from the Tennessee Eastman process dataset of a chemical plant displayed in OSI Soft is provided.« less
  2. In this paper we derive a new capability for robots to measure relative direction, or Angle-of-Arrival (AOA), to other robots, while operating in non-line-of-sight and unmapped environments, without requiring external infrastructure. We do so by capturing all of the paths that a WiFi signal traverses as it travels from a transmitting to a receiving robot in the team, which we term as an AOA profile. The key intuition behind our approach is to emulate antenna arrays in the air as a robot moves freely in 2D or 3D space. The small differences in the phase and amplitude of WiFi signalsmore »are thus processed with knowledge of a robots’ local displacements (often provided via inertial sensors) to obtain the profile, via a method akin to Synthetic Aperture Radar (SAR). The main contribution of this work is the development of i) a framework to accommodate arbitrary 2D and 3D trajectories, as well as continuous mobility of both transmitting and receiving robots, while computing AOA profiles between them and ii) an accompanying analysis that provides a lower bound on variance of AOA estimation as a function of robot trajectory geometry that is based on the Cramer Rao Bound and antenna array theory. This is a critical distinction with previous work on SAR that restricts robot mobility to prescribed motion patterns, does not generalize to the full 3D space, and/or requires transmitting robots to be static during data acquisition periods. In fact, we find that allowing robots to use their full mobility in 3D space while performing SAR, results in more accurate AOA profiles and thus better AOA estimation. We formally characterize this observation as the informativeness of the trajectory; a computable quantity for which we derive a closed form. All theoretical developments are substantiated by extensive simulation and hardware experiments on air/ground robot platforms. Our experimental results bolster our theoretical findings, demonstrating that 3D trajectories provide enhanced and consistent accuracy, with AOA error of less than 10 deg for 95% of trials. We also show that our formulation can be used with an off-the-shelf trajectory estimation sensor (Intel RealSense T265 tracking camera), for estimating the robots’ local displacements, and we provide theoretical as well as empirical results that show the impact of typical trajectory estimation errors on the measured AOA. Finally, we demonstrate the performance of our system on a multi-robot task where a heterogeneous air/ground pair of robots continuously measure AOA profiles over a WiFi link to achieve dynamic rendezvous in an unmapped, 300 square meter environment with occlusions.« less
  3. Snake robotics is an important research topic with a wide range of applications, including inspection in confined spaces, search-and-rescue, and disaster response. Snake robots are well-suited to these applications because of their versatility and adaptability to unstructured and constrained environments. In this paper, we introduce a soft pneumatic robotic snake that can imitate the capabilities of biological snakes, its soft body can provide flexibility and adaptability to the environment. This paper combines soft mobile robot modeling, proprioceptive feedback control, and motion planning to pave the way for functional soft robotic snake autonomy. We propose a pressure-operated soft robotic snake withmore »a high degree of modularity that makes use of customized embedded flexible curvature sensing. On this platform, we introduce the use of iterative learning control using feedback from the on-board curvature sensors to enable the snake to automatically correct its gait for superior locomotion. We also present a motion planning and trajectory tracking algorithm using an adaptive bounding box, which allows for efficient motion planning that still takes into account the kinematic state of the soft robotic snake. We test this algorithm experimentally, and demonstrate its performance in obstacle avoidance scenarios.« less
  4. This paper addresses the problem of autonomously deploying an unmanned aerial vehicle in non-trivial settings, by leveraging a manipulator arm mounted on a ground robot, acting as a versatile mobile launch platform. As real-world deployment scenarios for micro aerial vehicles such as searchand- rescue operations often entail exploration and navigation of challenging environments including uneven terrain, cluttered spaces, or even constrained openings and passageways, an often arising problem is that of ensuring a safe take-off location, or safely fitting through narrow openings while in flight. By facilitating launching from the manipulator end-effector, a 6- DoF controllable take-off pose within themore »arm workspace can be achieved, which allows to properly position and orient the aerial vehicle to initialize the autonomous flight portion of a mission. To accomplish this, we propose a sampling-based planner that respects a) the kinematic constraints of the ground robot / manipulator / aerial robot combination, b) the geometry of the environment as autonomously mapped by the ground robots perception systems, and c) accounts for the aerial robot expected dynamic motion during takeoff. The goal of the proposed planner is to ensure autonomous collision-free initialization of an aerial robotic exploration mission, even within a cluttered constrained environment. At the same time, the ground robot with the mounted manipulator can be used to appropriately position the take-off workspace into areas of interest, effectively acting as a carrier launch platform. We experimentally demonstrate this novel robotic capability through a sequence of experiments that encompass a micro aerial vehicle platform carried and launched from a 6-DoF manipulator arm mounted on a four-wheel robot base.« less
  5. Ishigami G., Yoshida K. (Ed.)
    This paper develops an autonomous tethered aerial visual assistant for robot operations in unstructured or confined environments. Robotic tele-operation in remote environments is difficult due to the lack of sufficient situational awareness, mostly caused by stationary and limited field-of-view and lack of depth perception from the robot’s onboard camera. The emerging state of the practice is to use two robots, a primary and a secondary that acts as a visual assistant to overcome the perceptual limitations of the onboard sensors by providing an external viewpoint. However, problems exist when using a tele-operated visual assistant: extra manpower, manually chosen suboptimal viewpoint,more »and extra teamwork demand between primary and secondary operators. In this work, we use an autonomous tethered aerial visual assistant to replace the secondary robot and operator, reducing the human-robot ratio from 2:2 to 1:2. This visual assistant is able to autonomously navigate through unstructured or confined spaces in a risk-aware manner, while continuously maintaining good viewpoint quality to increase the primary operator’s situational awareness. With the proposed co-robots team, tele-operation missions in nuclear operations, bomb squad, disaster robots, and other domains with novel tasks or highly occluded environments could benefit from reduced manpower and teamwork demand, along with improved visual assistance quality based on trustworthy risk-aware motion in cluttered environments.« less