skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inundated Vegetation Mapping Using SAR Data: A Comparison of Polarization Configurations of UAVSAR L-Band and Sentinel C-Band
Flood events have become intense and more frequent due to heavy rainfall and hurricanes caused by global warming. Accurate floodwater extent maps are essential information sources for emergency management agencies and flood relief programs to direct their resources to the most affected areas. Synthetic Aperture Radar (SAR) data are superior to optical data for floodwater mapping, especially in vegetated areas and in forests that are adjacent to urban areas and critical infrastructures. Investigating floodwater mapping with various available SAR sensors and comparing their performance allows the identification of suitable SAR sensors that can be used to map inundated areas in different land covers, such as forests and vegetated areas. In this study, we investigated the performance of polarization configurations for flood boundary delineation in vegetated and open areas derived from Sentinel1b, C-band, and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band data collected during flood events resulting from Hurricane Florence in the eastern area of North Carolina. The datasets from the sensors for the flooding event collected on the same day and same study area were processed and classified for five landcover classes using a machine learning method—the Random Forest classification algorithm. We compared the classification results of linear, dual, and full polarizations of the SAR datasets. The L-band fully polarized data classification achieved the highest accuracy for flood mapping as the decomposition of fully polarized SAR data allows land cover features to be identified based on their scattering mechanisms.  more » « less
Award ID(s):
1800768
PAR ID:
10409062
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Remote Sensing
Volume:
14
Issue:
24
ISSN:
2072-4292
Page Range / eLocation ID:
6374
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Permafrost-affected ecosystems of the Arctic–boreal zone in northwestern North America are undergoing profound transformation due to rapid climate change. NASA's Arctic Boreal Vulnerability Experiment (ABoVE) is investigating characteristics that make these ecosystems vulnerable or resilient to this change. ABoVE employs airborne synthetic aperture radar (SAR) as a powerful tool to characterize tundra, taiga, peatlands, and fens. Here, we present an annotated guide to the L-band and P-band airborne SAR data acquired during the 2017, 2018, 2019, and 2022 ABoVE airborne campaigns. We summarize the ∼80 SAR flight lines and how they fit into the ABoVE experimental design (Miller et al., 2023; https://doi.org/10.3334/ORNLDAAC/2150). The Supplement provides hyperlinks to extensive maps, tables, and every flight plan as well as individual flight lines. We illustrate the interdisciplinary nature of airborne SAR data with examples of preliminary results from ABoVE studies including boreal forest canopy structure from TomoSAR data over Delta Junction, AK, and the Boreal Ecosystem Research and Monitoring Sites (BERMS) area in northern Saskatchewan and active layer thickness and soil moisture data product validation. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band airborne SAR data (https://uavsar.jpl.nasa.gov/cgi-bin/data.pl). 
    more » « less
  2. Subsurface imaging in arid regions is a well-known application of satellite Synthetic Aperture Radar (SAR). Archaeological prospection has often focused on L-band SAR sensors, given the ability of longer wavelengths to penetrate more deeply into sand. In contrast, this study demonstrates capabilities of shorter-wavelength, but higher spatial resolution, C-band and X-band SAR sensors in archaeological subsurface imaging at the site of ‘Uqdat al-Bakrah (Safah), Oman. Despite having varying parameters and acquisitions, both the X-band and C-band images analyzed were able to identify a subsurface paleo-channel that is not visible on the ground surface. This feature was first identified through Ground Penetrating Radar (GPR) survey, then recognized in the SAR imagery and further verified by test excavations. Both the GPR and the excavations reveal the base of the paleo-channel at a depth of 0.6 m–0.7 m. Hence, both X-band and C-band wavelengths are appropriate for subsurface archaeological prospection in suitable (dry silt and sand) conditions with specific acquisition parameters. Moreover, these results offer important new insights into the paleo-environmental context of ancient metal-working at ‘Uqdat al-Bakrah and demonstrate surface water flow roughly contemporary with the site’s occupation. 
    more » « less
  3. Numerous algorithms have been developed to automate the process of delineating water surface maps for flood monitoring and mitigation purposes by using multiple sources such as satellite sensors and digital elevation model (DEM) data. To better understand the causes of inaccurate mapping information, we aim to demonstrate the advantages and limitations of these algorithms through a case study of the 2022 Madagascar flooding event. The HYDRAFloods toolbox was used to perform preprocessing, image correction, and automated flood water detection based on the state-of-the-art Edge Otsu, Bmax Otsu, and Fuzzy Otsu algorithms for the satellite images; the FwDET tool was deployed upon the cloud computing platform (Google Earth Engine) for rapid estimation of flood area/depth using the digital elevation model (DEM) data. Generated surface water maps from the respective techniques were evaluated qualitatively against each other and compared with a reference map produced by the European Union Copernicus Emergency Management Service (CEMS). The DEM-based maps show generally overestimated flood extents. The satellite-based maps show that Edge Otsu and Bmax Otsu methods are more likely to generate consistent results than those from Fuzzy Otsu. While the synthetic-aperture radar (SAR) data are typically favorable over the optical image under undesired weather conditions, maps generated based on SAR data tend to underestimate the flood extent as compared with reference maps. This study also suggests the newly launched Landsat-9 serves as an essential supplement to the rapid delineation of flood extents. 
    more » « less
  4. The 2023 Kahramanmaraş earthquake sequence produced extensive liquefaction-induced ground deformations and ongoing flooding along the shoreline of the Mediterranean port city of İskenderun, Türkiye. This study compiles field observations and analyses from cross-disciplinary perspectives to investigate whether earthquake-induced liquefaction was a significant factor for increasing the flood hazard in İskenderun. Geotechnical reconnaissance observations following the earthquakes included seaward lateral spreading, settlement beneath buildings, and failures of coastal infrastructure. Three presented lateral spreading case histories indicate consistent ground deformation patterns with areas of reclaimed land. Persistent scatterer interferometry (PSI) measurements from synthetic aperture radar (SAR) imagery identify a noticeably greater rate of pre- and post-earthquake subsidence within the İskenderun coastal and urban areas relative to the surrounding regions. The PSI measurements also indicate subsidence rates accelerated following the earthquakes and were typically highest near the observed liquefaction manifestations. These evaluations suggest that while the liquefaction of coastal reclaimed fill caused significant ground deformations in the shoreline area, ongoing subsidence of İskenderun and other factors likely also exacerbated the flood hazard. Insights from this work suggest the importance of evaluating multi-hazard liquefaction and flood consequences for enhancing the resilience of coastal cities. 
    more » « less
  5. Remote reconnaissance missions are promising solutions for the assessment of earthquake-induced structural damage and cascading geological hazards. Space-borne remote sensing can complement in-field missions when safety and accessibility concerns limit post-earthquake operations on the ground. However, the implementation of remote sensing techniques in post-disaster missions is limited by the lack of methods that combine different techniques and integrate them with field survey data. This paper presents a new approach for rapid post-earthquake building damage assessment and landslide mapping, based on Synthetic Aperture Radar (SAR) data. The proposed texture-based building damage classification approach exploits very high resolution post-earthquake SAR data integrated with building survey data. For landslide mapping, a backscatter intensity-based landslide detection approach, which also includes the separation between landslides and flooded areas, is combined with optical-based manual inventories. The approach was implemented during the joint Structural Extreme Event Reconnaissance, GeoHazards International and Earthquake Engineering Field Investigation Team mission that followed the 2021 Haiti Earthquake and Tropical Cyclone Grace. 
    more » « less