skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanoshaped CeO2 and SiO2 Supported Ru catalyst for Plasma Catalysis Chemical Looping Reactions
Chemical Looping Reaction is a key strategy to achieve both emission reduction and carbon utilization while producing various value-added chemicals, through redox reactions. Here we study the effect of nanoshape ceria supported Ru catalysts for plasma assisted Chemical Looping Reforming reduction step coupled with water splitting oxidation step reactions in the temperature range 150 ⁰C to 400 ⁰C at 1 atm pressure. The oxygen carrier/catalyst combination materials used are Ru/CeO2 nanorods (NR), Ru/CeO2 nanocubes (NC), Ru/SiO2 nanospheres (NS), and Ni-based perovskite mixed with CeO2. NRs and NCs showed the best catalytic performance followed by Ni-based perovskite and NS. Differences in the selectivity and reactivity for the NRs and NCs were noticed. The NCs showed slightly higher selectivity towards H2 formation during reduction step and lesser carbon deposition. From the analysis of data and literature, it is proposed that the spillover of species such as H adatoms and CHx radicals after activation at Ru sites into the CeO2 supports and lattice O mobility may be slightly faster in the case of NCs. During the oxidation step, the NR and NC materials showed increased H2 production by a factor of more than 4 when compared to Ni based perovskite material.  more » « less
Award ID(s):
1655280
PAR ID:
10221575
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International journal of energy engineering
Volume:
10
Issue:
3
ISSN:
2163-1905
Page Range / eLocation ID:
67-79
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ni/SBA-15 meso-structured catalysts modified with chromium and CeO2 (Ni–Cr-CeO2/SBA-15) were utilized to produce hydrogen from glycerol steam reforming (GSR). The catalysts were synthesized by a one-pot hydrothermal process and extensively characterized by analytical techniques such as N2 adsorption–desorption (BET), H2-temperature programmed reduction (H2-TPR), powder X-ray diffraction (PXRD), inductively coupled plasma-optical emission spectrometry (ICP-OES), and transmission electron microscopy (TEM). The low-angle XRD reflections affirmed that the catalysts were crystalline and possessed a 2D-ordered porosity. The BET results depicted that all the catalysts exhibited a good surface area ranging from 633 to 792m2/g, and the pore sizes were consistently in the mesoporous range (between 3 and 5 nm). TEM analysis of both calcined and spent catalysts revealed that the metal active sites were embedded in the hybrid CeO2-SiO2 support. Overall, the Ni-based catalysts exhibited higher glycerol conversion -12Ni-SBA-15–99.9%, 12Ni3CeO2-SBA-15–89.4%, and 8Ni4Cr3CeO2-SBA-15–99.7%. Monometallic 12Ni/SBA-15 performed exceptionally well, while 12Cr/SBA-15 performed poorly with the highest 71.48% CO selectivity. For short-term GSR reactions, CeO2 addition to 12Ni/SBA-15 did not have any effect, whereas Cr addition resulted in a 32% decrease in H2 selectivity. The long-term stability studies of 12Ni-SBA-15 showed H2 selectivity of ~ 64% and ~ 98% glycerol conversion. However, its activity was short-lived. After 20–30 h, the H2 selectivity and conversion dropped precipitously to 40%. The doping of mesoporous Ni/SBA-15 with Cr and CeO2 remarkably enhanced the long-term stability of the catalyst for 12Ni3CeO2-SBA-15, and 8Ni4Cr3CeO2-SBA-15 catalyst which showed ~ 58% H2 selectivity and ~ 100% conversion for the entire 60 h. Interestingly, Cr and CeO2 seem to improve the shelf-life of Ni-SBA-15 via different mechanistic pathways. CeO2 mitigated Ni poisoning through coke oxidation whereas Cr bolstered the catalyst stability via maintaining a well-defined pore size, structural rigidity, and integrity of the heterogeneous framework, thereby restricting structural collapse, and hence retard sintering of the Ni active sites during the long-term 60 h of continuous reaction. Hydrogen generation from renewable biomass like glycerol could potentially serve as a sustainable energy source and could substantially help reduce the carbon footprint of the environment 
    more » « less
  2. Abstract Chemical looping is a promising approach for improving the energy efficiency of many industrial chemical processes. However, a major limitation of modern chemical looping technologies is the lack of suitable active materials to mediate the involved subreactions. Identification of suitable materials has been historically limited by the scarcity of high‐temperature (>600 °C) thermochemical data to evaluate candidate materials. An accuratethermodynamic approach is demonstrated here to rapidly identify active materials which is applicable to a wide variety of chemical looping chemistries. Application of this analysis to chemical looping combustion correctly classifies 17/17 experimentally studied redox materials by their viability and identifies over 1300 promising yet previously unstudied active materials. This approach is further demonstrated by analyzing redox pairs for mediating a novel chemical looping process for producing pure SO2from raw sulfur and air which could provide a more efficient and lower emission route to sulfuric acid. 12 promising redox materials for this process are identified, two of which are supported by previous experimental studies of their individual oxidation and reduction reactions. This approach provides the necessary foundation for connecting process design with high‐throughput material discovery to accelerate the innovation and development of a wide range of chemical looping technologies. 
    more » « less
  3. Using sunlight to produce hydrogen gas via photocatalytic water splitting is highly desirable for green energy harvesting and sustainability. In this work, Mn 2+ doped 1-dimensional (1D) CdS nanorods (NRs) with Pt tips ( i.e. , 1D Mn:CdS-Pt NRs) were synthesized for photocatalytic water splitting to generate hydrogen gas. The incorporation of Mn 2+ dopants inside the 1D CdS NRs with a significantly longer lifetime (∼ms) than that of host excitons (∼ns) facilitates charge separation; the electron transfer to metal Pt tips leads to enhanced photocatalytic activity in water splitting redox reactions. The as-synthesized Mn 2+ doped CdS NR-based photocatalyst generated an order of magnitude greater yield of hydrogen gas compared to the undoped CdS NR-based photocatalyst. The enhanced charge transport from the long lifetime excited state of Mn 2+ dopants in light harvesting semiconductor nanomaterials presents a new opportunity to increase the overall photocatalytic performance. 
    more » « less
  4. The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H2) and H2O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H2O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography–mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions. 
    more » « less
  5. Water is the ideal green solvent for organic electrosynthesis. However, a majority of electroorganic processes require potentials that lie beyond the electrochemical window for water. In general, water oxidation and reduction lead to poor synthetic yields and selectivity or altogether prohibit carrying out a desired reaction. Herein, we report several electroorganic reactions in water using synthetic strategies referred to as reductive oxidation and oxidative reduction. Reductive oxidation involves the homogeneous reduction of peroxydisulfate (S2O82–) via electrogenerated Ru(NH3)62+ at potential of –0.2 V vs. Ag/AgCl (3.5 M KCl) to form the highly oxidizing sulfate radical anion (E0′ (SO4•–/SO42–) = 2.21 V vs. Ag/AgCl), which is capable of oxidizing species beyond the water oxidation potential. Electrochemically generated SO4•– then efficiently abstracts a hydrogen atom from a variety of organic compounds such as benzyl alcohol and toluene to yield product in water. The reverse analogue of reductive oxidation is oxidative reduction. In this case, the homogeneous oxidation of oxalate (C2O42–) by electrochemically generated Ru(bpy)33+ produces the strongly reducing carbon dioxide radical anion (E0′ (CO2•–/CO2) = –2.1 V vs. Ag/AgCl), which is capable of reducing species at potential beyond the water or proton reduction potential. In preliminary studies, the CO2•– has used to homogenously reduce the C–Br moiety belonging to benzyl bromide at an oxidizing potential in aqueous solution. 
    more » « less