skip to main content

Title: A study on an applied behavior analysis-based robot-mediated listening comprehension intervention for ASD
Abstract Autism spectrum disorder (ASD) is a lifelong developmental condition that affects an individual’s ability to communicate and relate to others. Despite such challenges, early intervention during childhood development has shown to have positive long-term benefits for individuals with ASD. Namely, early childhood development of communicative speech skills has shown to improve future literacy and academic achievement. However, the delivery of such interventions is often time-consuming. Socially assistive robots (SARs) are a potential strategic technology that could help support intervention delivery for children with ASD and increase the number of individuals that healthcare professionals can positively affect. For SARs to be effectively integrated in real-world treatment for individuals with ASD, they should follow current evidence-based practices used by therapists such as Applied Behavior Analysis (ABA). In this work, we present a study that investigates the efficacy of applying well-known ABA techniques to a robot-mediated listening comprehension intervention delivered to children with ASD at a university-based ABA clinic. The interventions were delivered in place of human therapists to teach study participants a new skill as a part of their overall treatment plan. All the children participating in the intervention improved in the skill being taught by the robot and enjoyed interacting more » with the robot, as evident by high occurrences of positive affect as well as engagement during the sessions. One of the three participants has also reached mastery of the skill via the robot-mediated interventions. « less
Authors:
; ; ;
Award ID(s):
1948224
Publication Date:
NSF-PAR ID:
10221652
Journal Name:
Paladyn, Journal of Behavioral Robotics
Volume:
12
Issue:
1
Page Range or eLocation-ID:
31 to 46
ISSN:
2081-4836
Sponsoring Org:
National Science Foundation
More Like this
  1. Socially Assistive Robots (SARs) have demonstrated success in the delivery of interventions to individuals with Autism Spectrum Disorder (ASD). To date, these robot-mediated interventions have primarily been designed and implemented by robotics researchers. It remains unclear whether therapists could independently utilize robots to deliver therapies in clinical settings. In this paper, we conducted a study to investigate whether therapists could design and implement robot-mediated interventions for children with ASD. Furthermore, we compared therapists’ performance, efficiency, and perceptions towards using a Virtual Reality (VR) and kinesthetic-based interface for delivering robot-mediated interventions. Overall, our results demonstrated therapists could independently design and implementmore »interventions with a SAR. They were faster at designing a new intervention using VR than a kinesthetic interface. Therapists also had similar performance to delivering in-person interventions when utilizing VR to deliver interventions with the robot. Therapists reported moderate workload using the VR interface and perceived VR to be usable.« less
  2. Socially assistive robots (SARs) are being utilized for delivering a variety of healthcare services to patients. The design of these human-robot interactions (HRIs) for healthcare applications have primarily focused on the interaction flow and verbal behaviors of a SAR. To date, there has been minimal focus on investigating how SAR nonverbal behaviors should be designed according to the context of the SAR’s communication goals during a HRI. In this paper, we present a methodology to investigate nonverbal behavior during specific human-human healthcare interactions so that they can be applied to a SAR. We apply this methodology to study the context-dependentmore »vocal nonverbal behaviors of therapists during discrete trial training (DTT) therapies delivered to children with autism. We chose DTT because it is a therapy commonly being delivered by SARs and modeled after human-human interactions. Results from our study led to the following recommendations for the design of the vocal nonverbal behavior of SARs during a DTT therapy: 1) the consequential error correction should have a lower pitch and intensity than the discriminative stimulus but maintain a similar speaking rate; and 2) the consequential reinforcement should have a higher pitch and intensity than the discriminative stimulus but a slower speaking rate.« less
  3. Whether executive functioning deficits result in children experiencing learning difficulties is presently unclear. Yet evidence for these hypothesized causal relations has many implications for early intervention design and delivery. We used a multi-year panel design, multiple criterion and predictor variable measures, extensive statistical control for potential confounds including autoregressive prior histories of both reading and mathematics difficulties, and additional epidemiological methods to preliminarily examine these hypothesized relations. Results from multivariate logistic regression analyses of a nationally representative and longitudinal sample of 18,080 children (i.e., the Early Childhood Longitudinal Study – Kindergarten Cohort of 2011, or ECLS-K: 2011) indicated that workingmore »memory and, separately, cognitive flexibility deficits uniquely increased kindergarten children’s risk of experiencing reading as well as mathematics difficulties in first grade. The risks associated with working memory deficits were particularly strong. Experimentally-evaluated, multi-component interventions designed to help young children with reading or mathematics difficulties may also need to remediate early deficits in executive function, particularly in working memory.« less
  4. Drawing, as a skill, is closely tied to many creative fields and it is a unique practice for every individual. Drawing has been shown to improve cognitive and communicative abilities, such as visual communication, problem-solving skills, students’ academic achievement, awareness of and attention to surrounding details, and sharpened analytical skills. Drawing also stimulates both sides of the brain and improves peripheral skills of writing, 3-D spatial recognition, critical thinking, and brainstorming. People are often exposed to drawing as children, drawing their families, their houses, animals, and, most notably, their imaginative ideas. These skills develop over time naturally to some extent,more »however, while the base concept of drawing is a basic skill, the mastery of this skill requires extensive practice and it can often be significantly impacted by the self-efficacy of an individual. Sketchtivity is an AI tool developed by Texas A&M University to facilitate the growth of drawing skills and track their performance. Sketching skill development depends in part on students’ self-efficacy associated with their drawing abilities. Gauging the drawing self-efficacy of individuals is critical in understanding the impact that this drawing practice has had with this new novel instrument, especially in contrast to traditional practicing methods. It may also be very useful for other researchers, educators, and technologists. This study reports the development and initial validation of a new 13-item measure that assesses perceived drawing self efficacy. The13 items to measure drawing self efficacy were developed based on Bandura’s guide for constructing Self-Efficacy Scales. The participants in the study consisted of 222 high school students from engineering, art, and pre-calculus classes. Internal consistency of the 13 observed items were found to be very high (Cronbach alpha: 0.943), indicating a high reliability of the scale. Exploratory Factor Analysis was performed to further investigate the variance among the 13 observed items, to find the underlying latent factors that influenced the observed items, and to see if the items needed revision. We found that a three model was the best fit for our data, given fit statistics and model interpretability. The factors are: Factor 1: Self-efficacy with respect to drawing specific objects; Factor 2: Self-efficacy with respect to drawing practically to solve problems, communicating with others, and brainstorming ideas; Factor 3: Self-efficacy with respect to drawing to create, express ideas, and use one’s imagination. An alternative four-factor model is also discussed. The purpose of our study is to inform interventions that increase self-efficacy. We believe that this assessment will be valuable especially for education researchers who implement AI-based tools to measure drawing skills.This initial validity study shows promising results for a new measure of drawing self-efficacy. Further validation with new populations and drawing classes is needed to support its use, and further psychometric testing of item-level performance. In the future, this self-efficacy assessment could be used by teachers and researchers to guide instructional interventions meant to increase drawing self-efficacy.« less
  5. The motivation of students to actively engage in course activities has significant impact on the outcome of academic courses. Prior studies have shown that innovative instructional interventions and course delivery methods have a vital role in boosting the motivation of students. Gamification tools aid course delivery by utilizing well established game design principles to enhance skill development, routine practice and self-testing. In this article, we present a study on how the use of a course gamification platform dubbed OneUp impacts the motivation of students in an online cyber security course. The study shows that more than 90% of the respondentsmore »agreed that OneUp has improved the effectiveness of the course delivery. In addition, 75% of the respondents want to use OneUp in their future courses. Furthermore, our analysis shows that OneUp has improved the median grade of students from B+ to A- compared to the same course delivered the previous year without using OneUp.« less