skip to main content


Title: Robot-mediated Group Instruction for Children with ASD: A Pilot Study
Children diagnosed with autism spectrum disorder (ASD) typically work towards acquiring skills to participate in a regular classroom setting such as attending and appropriately responding to an instructor’s requests. Social robots have the potential to support children with ASD in learning group-interaction skills. However, the majority of studies that target children with ASD’s interactions with social robots have been limited to one-on-one interactions. Group interaction sessions present unique challenges such as the unpredictable behaviors of the other children participating in the group intervention session and shared attention from the instructor. We present the design of a robot-mediated group interaction intervention for children with ASD to enable them to practice the skills required to participate in a classroom. We also present a study investigating differences in children's learning behaviors during robot-led and human-led group interventions over multiple intervention sessions. Results of this study suggests that children with ASD's learning behaviors are similar during human and robot instruction. Furthermore, preliminary results of this study suggest that a novelty effect was not observed when children interacted with the robot over multiple sessions.  more » « less
Award ID(s):
1948224
PAR ID:
10442499
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
Page Range / eLocation ID:
1506 to 1513
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Autism spectrum disorder (ASD) is a lifelong developmental condition that affects an individual’s ability to communicate and relate to others. Despite such challenges, early intervention during childhood development has shown to have positive long-term benefits for individuals with ASD. Namely, early childhood development of communicative speech skills has shown to improve future literacy and academic achievement. However, the delivery of such interventions is often time-consuming. Socially assistive robots (SARs) are a potential strategic technology that could help support intervention delivery for children with ASD and increase the number of individuals that healthcare professionals can positively affect. For SARs to be effectively integrated in real-world treatment for individuals with ASD, they should follow current evidence-based practices used by therapists such as Applied Behavior Analysis (ABA). In this work, we present a study that investigates the efficacy of applying well-known ABA techniques to a robot-mediated listening comprehension intervention delivered to children with ASD at a university-based ABA clinic. The interventions were delivered in place of human therapists to teach study participants a new skill as a part of their overall treatment plan. All the children participating in the intervention improved in the skill being taught by the robot and enjoyed interacting with the robot, as evident by high occurrences of positive affect as well as engagement during the sessions. One of the three participants has also reached mastery of the skill via the robot-mediated interventions. 
    more » « less
  2. Robot-mediated interventions have been investigated for the treatment of social skill deficits amongst children with Autism Spectrum Disorder (ASD). Does the use of a Nao robot as a mediator increase vocal interaction between children with ASD? The present study examined the vocalization and turn-taking rate in six children with ASD (mean age = 11.4 years, SD = 0.86 years) interacting with and without a Nao robot for 10 sessions, order counterbalanced. Each session lasted nine minutes. In the Robot condition, the robot provided vocal prompts; in the No Robot condition, children interacted freely. Child vocalization and turn-taking rate defined as the number of utterances/turns per second were measured. Results demonstrated that three children produced higher vocalization and turn-taking rates when a robot was present, and two when it was absent. One participant produced higher vocalization rates when the robot was not present, but more conversational turns when the robot was present. The findings suggest that the use of a Nao robot as a social mediator increases vocalization and turn-taking rates among children with ASD, but large individual variability is observed. The effect of the robot as a mediator on lexical diversity of child speech will also be investigated. 
    more » « less
  3. Technical and practical challenges in human-robot interaction (HRI) research often involve facilitating sustained long-term interactions, fostering engagement with multiple individuals, and taking place in-the-wild. The home environment embodies all three challenges, as multiple family members regularly engage with technology at home. In our research, we take a family-centered approach to understand, design, and evaluate how social robots can take part in setting and maintaining family routines to support long-term HRI. In our prior work, we conducted participatory design sessions with children and families to understand their preferences for having social robots in their home. We then designed interactions for robot-facilitated routines. Finally, our future work will include field studies investigating how robot-facilitated routines can support long-term engagement in family-robot interactions and facilitate connections. 
    more » « less
  4. The authors present the design and implementation of an exploratory virtual learning environment that assists children with autism (ASD) in learning science, technology, engineering, and mathematics (STEM) skills along with improving social-emotional and communication skills. The primary contribution of this exploratory research is how educational research informs technological advances in triggering a virtual AI companion (AIC) for children in need of social-emotional and communication skills development. The AIC adapts to students’ varying levels of needed support. This project began by using puppetry control (human-in-the-loop) of the AIC, assisting students with ASD in learning basic coding, practicing their social skills with the AIC, and attaining emotional recognition and regulation skills for effective communication and learning. The student is given the challenge to program a robot, Dash™, to move in a square. Based on observed behaviors, the puppeteer controls the virtual agent’s actions to support the student in coding the robot. The virtual agent’s actions that inform the development of the AIC include speech, facial expressions, gestures, respiration, and heart color changes coded to indicate emotional state. The paper provides exploratory findings of the first 2 years of this 5-year scaling-up research study. The outcomes discussed align with a common approach of research design used for students with disabilities, called single case study research. This type of design does not involve random control trial research; instead, the student acts as her or his own control subject. Students with ASD have substantial individual differences in their social skill deficits, behaviors, communications, and learning needs, which vary greatly from the norm and from other individuals identified with this disability. Therefore, findings are reported as changes within subjects instead of across subjects. While these exploratory observations serve as a basis for longer term research on a larger population, this paper focuses less on student learning and more on evolving technology in AIC and supporting students with ASD in STEM environments. 
    more » « less
  5. Designing and implementing human-robot interactions requires numerous skills, from having a rich understanding of social interactions and the capacity to articulate their subtle requirements, to the ability to then program a social robot with the many facets of such a complex interaction. Although designers are best suited to develop and implement these interactions due to their inherent understanding of the context and its requirements, these skills are a barrier to enabling designers to rapidly explore and prototype ideas: it is impractical for designers to also be experts on social interaction behaviors, and the technical challenges associated with programming a social robot are prohibitive. In this work, we introduce Synthé, which allows designers to act out, or bodystorm, multiple demonstrations of an interaction. These demonstrations are automatically captured and translated into prototypes for the design team using program synthesis. We evaluate Synthé in multiple design sessions involving pairs of designers bodystorming interactions and observing the resulting models on a robot. We build on the findings from these sessions to improve the capabilities of Synthé and demonstrate the use of these capabilities in a second design session. 
    more » « less