Abstract Applying halo models to analyze the small-scale clustering of galaxies is a proven method for characterizing the connection between galaxies and their host halos. Such works are often plagued by systematic errors or limited to clustering statistics that can be predicted analytically. In this work, we employ a numerical mock-based modeling procedure to examine the clustering of Sloan Digital Sky Survey DR7 galaxies. We apply a standard halo occupation distribution (HOD) model to dark matter only simulations with a ΛCDM cosmology. To constrain the theoreStical models, we utilize a combination of galaxy number density and selected scales of the projected correlation function, redshift-space correlation function, group multiplicity function, average group velocity dispersion, mark correlation function, and counts-in-cells statistics. We design an algorithm to choose an optimal combination of measurements that yields tight and accurate constraints on our model parameters. Compared to previous work using fewer clustering statistics, we find a significant improvement in the constraints on all parameters of our halo model for two different luminosity-threshold galaxy samples. Most interestingly, we obtain unprecedented high-precision constraints on the scatter in the relationship between galaxy luminosity and halo mass. However, our best-fit model results in significant tension (>4σ) for both samples, indicating the need to add second-order features to the standard HOD model. To guarantee the robustness of these results, we perform an extensive analysis of the systematic and statistical errors in our modeling procedure, including a first of its kind study of the sensitivity of our constraints to changes in the halo mass function due to baryonic physics.
more »
« less
Testing the accuracy of halo occupation distribution modelling using hydrodynamic simulations
ABSTRACT Halo models provide a simple and computationally inexpensive way to investigate the connection between galaxies and their dark matter haloes. However, these models rely on the assumption that the role of baryons can easily be parametrized in the modelling procedure. We aim to examine the ability of halo occupation distribution (HOD) modelling to reproduce the galaxy clustering found in two different hydrodynamic simulations, Illustris and EAGLE. For each simulation, we measure several galaxy clustering statistics on two different luminosity threshold samples. We then apply a simple five parameter HOD, which was fit to each simulation separately, to the corresponding dark matter-only simulations, and measure the same clustering statistics. We find that the halo mass function is shifted to lower masses in the hydrodynamic simulations, resulting in a galaxy number density that is too high when an HOD is applied to the dark matter-only simulation. However, the exact way in which baryons alter the mass function is remarkably different in the two simulations. After applying a correction to the halo mass function in each simulation, the HOD is able to accurately reproduce all clustering statistics for the high luminosity sample of galaxies. For the low luminosity sample, we find evidence that in addition to correcting the halo mass function, including spatial, velocity, and assembly bias parameters in the HOD is necessary to accurately reproduce clustering statistics.
more »
« less
- Award ID(s):
- 1909631
- PAR ID:
- 10221654
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 491
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 5771 to 5788
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper represents an effort to provide robust constraints on the galaxy–halo connection and simultaneously test the Planck ΛCDM cosmology using a fully numerical model of small-scale galaxy clustering. We explore two extensions to the standard Halo Occupation Distribution model: assembly bias, whereby halo occupation depends on both halo mass and the larger environment, and velocity bias, whereby galaxy velocities do not perfectly trace the velocity of the dark matter within the halo. Moreover, we incorporate halo mass corrections to account for the impact of baryonic physics on the halo population. We identify an optimal set of clustering measurements to constrain this “decorated” HOD model for both low- and high-luminosity galaxies in SDSS DR7. We find that, for low-luminosity galaxies, a model with both assembly bias and velocity bias provides the best fit to the clustering measurements, with no tension remaining in the fit. In this model, we find evidence for both central and satellite galaxy assembly bias at the 99% and 95% confidence levels, respectively. In addition, we find evidence for satellite galaxy velocity bias at the 99.9% confidence level. For high-luminosity galaxies, we find no evidence for either assembly bias or velocity bias, but our model exhibits significant tension with SDSS measurements. We find that all of these conclusions still stand when we include the effects of baryonic physics on the halo mass function, suggesting that the tension we find for high-luminosity galaxies may be due to a problem with our assumed cosmological model.more » « less
-
We extend current models of the halo occupation distribution (HOD) to include a flexible, empirical framework for the forward modeling of the intrinsic alignment (IA) of galaxies. A primary goal of this work is to produce mock galaxy catalogs for the purpose of validating existing models and methods for the mitigation of IA in weak lensing measurements. This technique can also be used to produce new, simulation-based predictions for IA and galaxy clustering. Our model is probabilistically formulated, and rests upon the assumption that the orientations of galaxies exhibit a correlation with their host dark matter (sub)halo orientation or with their position within the halo. We examine the necessary components and phenomenology of such a model by considering the alignments between (sub)halos in a cosmological dark matter only simulation. We then validate this model for a realistic galaxy population in a set of simulations in the Illustris-TNG suite. We create an HOD mock with Illustris-like correlations using our method, constraining the associated IA model parameters, with the between our model’s correlations and those of Illustris matching as closely as 1.4 and 1.1 for orientation–position and orientation–orientation correlation functions, respectively. By modeling the misalignment between galaxies and their host halo, we show that the 3-dimensional two-point position and orientation correlation functions of simulated (sub)halos and galaxies can be accurately reproduced from quasi-linear scales down to . We also find evidence for environmental influence on IA within a halo. Our publicly-available software provides a key component enabling efficient determination of Bayesian posteriors on IA model parameters using observational measurements of galaxy-orientation correlation functions in the highly nonlinear regime.more » « less
-
null (Ed.)ABSTRACT We present the hestia simulation suite: High-resolutions Environmental Simulations of The Immediate Area, a set of cosmological simulations of the Local Group. Initial conditions constrained by the observed peculiar velocity of nearby galaxies are employed to accurately simulate the local cosmography. Halo pairs that resemble the Local Group are found in low resolutions constrained, dark matter only simulations, and selected for higher resolution magneto hydrodynamic simulation using the arepo code. Baryonic physics follows the auriga model of galaxy formation. The simulations contain a high-resolution region of 3–5 Mpc in radius from the Local Group mid-point embedded in the correct cosmographic landscape. Within this region, a simulated Local Group consisting of a Milky Way and Andromeda like galaxy forms, whose description is in excellent agreement with observations. The simulated Local Group galaxies resemble the Milky Way and Andromeda in terms of their halo mass, mass ratio, stellar disc mass, morphology separation, relative velocity, rotation curves, bulge-disc morphology, satellite galaxy stellar mass function, satellite radial distribution, and in some cases, the presence of a Magellanic cloud like object. Because these simulations properly model the Local Group in their cosmographic context, they provide a testing ground for questions where environment is thought to play an important role.more » « less
-
Abstract We present the Cardinal mock galaxy catalogs, a new version of the Buzzard simulation that has been updated to support ongoing and future cosmological surveys, including the Dark Energy Survey (DES), DESI, and LSST. These catalogs are based on a one-quarter sky simulation populated with galaxies out to a redshift ofz= 2.35 to a depth ofmr= 27. Compared to the Buzzard mocks, the Cardinal mocks include an updated subhalo abundance matching model that considers orphan galaxies and includes mass-dependent scatter between galaxy luminosity and halo properties. This model can simultaneously fit galaxy clustering and group–galaxy cross-correlations measured in three different luminosity threshold samples. The Cardinal mocks also feature a new color assignment model that can simultaneously fit color-dependent galaxy clustering in three different luminosity bins. We have developed an algorithm that uses photometric data to further improve the color assignment model and have also developed a novel method to improve small-scale lensing below the ray-tracing resolution. These improvements enable the Cardinal mocks to accurately reproduce the abundance of galaxy clusters and the properties of lens galaxies in the DES data. As such, these simulations will be a valuable tool for future cosmological analyses based on large sky surveys.more » « less
An official website of the United States government

