skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proportional Integral Derivative Control in Spark Plasma Sintering Simulations
The prediction of microstructure evolution and densification behavior during the spark plasma sintering (SPS) process largely depends on accurate temperature regulation. A loop feedback control algorithm called proportional integral derivative (PID) control is a practical simulation tool, but its coefficients are often determined by an inefficient “trial and error” method. This paper is devoted to proposing a numerical method based on the principles of variable coefficients to construct an optimal linear PID controller in SPS electro-thermal simulations. Different types of temperature profiles were applied to evaluate the feasibility of the proposed method. Simulation results showed that, for temperature profiles conventionally used in SPS cycles, the PID output keeps pace with the desired profile. Characterized by an imperfect time delay and overshoot/undershoot, the constructed PID controller needs further advancement to provide a more satisfactory temperature regulation for non-continuous temperature profiles. The first step towards a numerical rule for the optimal PID controller design was undertaken in this work. It is expected to provide a valuable reference for the advanced electro-thermal modeling of SPS.  more » « less
Award ID(s):
1900876
PAR ID:
10222136
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials
Volume:
14
Issue:
7
ISSN:
1996-1944
Page Range / eLocation ID:
1779
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose a modeling and design technique for a proportional-integral-derivative (PID) controller in the presence of aperiodic intermittent sensor measurements. Using classical control design methods, PID controllers can be designed when measurements are available periodically, at discrete time instances, or continuously. Unfortunately, such design do not apply when measurements are available intermittently. Using the hybrid inclusions framework, we model the continuous-time plant to control, the mechanism triggering intermittent measurements, and a hybrid PID control law defining a hybrid closed-loop system. We provide sufficient conditions for uniform global asymptotic stability using Lyapunov set stability methods. These sufficient conditions are used for the design of the gains of the hybrid PID controller. Also, we propose relaxed sufficient conditions to provide a computationally tractable design method leveraging a polytopic embedding approach. The results are illustrated via numerical examples. 
    more » « less
  2. Energy expenditure for quadrotor control has a likelihood of being costly given parameter-dependent controllers that are less than optimal. The cost can grow proportionally when applied to multiple quadrotors for tracking and collaborative navigation tasks. This research aims to establish a basic approach to tuning PID (Proportional-Integral-Derivative) parameters for a simulated quadrotor drone. A PID controller for autonomy provides a straightforward method for correcting robotic movement based on its current state. However, applying a PID system to a flight controller poses challenges with an inherently under-actuated system, which includes the likelihood of large overshoots and lengthy adjustment times. To address this, we utilize PSO (Particle Swarm Optimization) for optimizing PID parameters in a simulated quadrotor. The PSO is employed to find optimal PID values for thrust, yaw, and translational movement on x- and y-positions by identifying converging values across randomly created particles. We conducted a set of experiments and compared it to the default PID controller. The experiments demonstrate converging properties for particles that achieve minimal fitness scores, particularly in reducing overshoot. The results indicate that the optimized PID controller outperforms the default PID controller without optimization. Using optimized PID controllers can decrease the amount of positional error during flight and when adjusting position with collaborative navigation and collision avoidance algorithms. 
    more » « less
  3. Safe operations of autonomous mobile robots in close proximity to humans, creates a need for enhanced trajectory tracking (with low tracking errors). Linear optimal control techniques such as Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) have been used successfully for low-speed applications while leveraging their model-based methodology with manageable computational demands. However, model and parameter uncertainties or other unmodeled nonlinearities may cause poor control actions and constraint violations. Nonlinear MPC has emerged as an alternate optimal-control approach but needs to overcome real-time deployment challenges (including fast sampling time, design complexity, and limited computational resources). In recent years, the optimal control-based deployments have benefitted enormously from the ability of Deep Neural Networks (DNNs) to serve as universal function approximators. This has led to deployments in a plethora of previously inaccessible applications – but many aspects of generalizability, benchmarking, and systematic verification and validation coupled with benchmarking have emerged. This paper presents a novel approach to fusing Deep Reinforcement Learning-based (DRL) longitudinal control with a traditional PID lateral controller for autonomous navigation. Our approach follows (i) Generation of an adequate fidelity simulation scenario via a Real2Sim approach; (ii) training a DRL agent within this framework; (iii) Testing the performance and generalizability on alternate scenarios. We use an initial tuned set of the lateral PID controller gains for observing the vehicle response over a range of velocities. Then we use a DRL framework to generate policies for an optimal longitudinal controller that successfully complements the lateral PID to give the best tracking performance for the vehicle. 
    more » « less
  4. Robotic manipulators with diverse structures find widespread use in both industrial and medical applications. Therefore, designing an appropriate controller is of utmost importance when utilizing such robots. In this research, we present a robust data-driven control method for the regulation of a 2-degree-of-freedom (2-DoF) robot manipulator. The nonlinear dynamic model of the 2-DoF robot arm is linearized using Koopman theory. The data mode decomposition (DMD) method is applied to generate the Koopman operator. A fractional sliding mode control (FOSMC) is employed to govern the data-driven linearized dynamic model. We compare the performance of Koopman fractional sliding mode control (KFOSMC) with conventional proportional integral derivative (PID) control and FOSMC prior to linearization by Koopman theory. The results demonstrate that KFOSMC outperforms PID and FOSMC in terms of high tracking performance, low tracking error, and minimal control signals. 
    more » « less
  5. An electro-optic modulator offers the function of modulating the propagation of light in a material with an electric field and enables a seamless connection between electronics-based computing and photonics-based communication. The search for materials with large electro-optic coefficients and low optical loss is critical to increase the efficiency and minimize the size of electro-optic devices. We present a semi-empirical method to compute the electro-optic coefficients of ferroelectric materials by combining first-principles density-functional theory calculations with Landau–Devonshire phenomenological modeling. We apply the method to study the electro-optic constants, also called Pockels coefficients, of three paradigmatic ferroelectric oxides: BaTiO 3 , LiNbO 3 , and LiTaO 3 . We present their temperature-, frequency-, and strain-dependent electro-optic tensors calculated using our method. The predicted electro-optic constants agree with the experimental results, where available, and provide benchmarks for experimental verification. 
    more » « less