skip to main content

Title: Mechanisms for Springtime Onset of Isolated Precipitation across the Southeastern United States
This study uses four-year radar-based precipitation organization and reanalysis datasets to study the mechanisms that lead to the abrupt springtime onset of precipitation associated with isolated storms in the Southeast United States (SE US). Although the SE US receives relatively constant precipitation year-round, previous work demonstrated a “hidden” summertime maximum in isolated precipitation features (IPF) whose annual cycle resembles that of monsoon climates in the subtropics. In the SE US, IPF rain abruptly ramps up in May and lasts until sometime between late August and early October. This study suggests that the onset of the IPF season in the SE US is brought about by a combination of slow thermodynamic processes and fast dynamic triggers, as follows. First, in the weeks prior to IPF onset, a gradual seasonal build-up of convective available potential energy (CAPE) occurs in the Gulf of Mexico. Then, in one-to-two pentads prior to onset, the upper-tropospheric jet stream shifts northward, favoring the presence of slow-moving frontal systems in the SE US. This poleward shift in the jet stream location in turn allows the establishment of the North Atlantic subtropical high western ridge over the SE US which, with associated poleward transport of high CAPE air from more » the Gulf of Mexico, leads to the establishment of the warm-season regime of IPF precipitation in the SE US. « less
Authors:
;
Award ID(s):
1660049
Publication Date:
NSF-PAR ID:
10222241
Journal Name:
Atmosphere
Volume:
12
Issue:
2
Page Range or eLocation-ID:
213
ISSN:
2073-4433
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study analyzes the effect of the location of the North Atlantic Subtropical High (NASH) western ridge on the daily variability of precipitation organization in the southeastern United States (SE US). The western side of the NASH, also known as the NASH western ridge, plays an important role in the variability of summertime precipitation in this region. In this study, the mean summertime position of the NASH western ridge was determined and used to classify each summer day during 2009–2012 into one of four quadrants. Composites of synoptic‐scale circulation and precipitation from mesoscale and isolated precipitation features (MPF and IPF) were calculated for each NASH western ridge quadrant. MPF contributed most (about 65%) of the total summertime precipitation and accounted for most of the differences between the four NASH quadrants. Domain‐averaged precipitation was highest (lowest) during NASH‐SW (NASH‐NW) when IPF (MPF) precipitation was strongest (weakest). The regionality of MPF precipitation maxima was generally associated with the location of low‐level jets and upper‐level troughs. For instance, positive MPF anomalies occurred across the SE US during NASH‐SW when the Great Plains low‐level jet turned eastward bringing moisture to fuel convection in the SE US. In contrast, IPF rain was distributed moremore »uniformly across the SE US. Finally, this study revealed a dipole of precipitation that is controlled by the position of the NASH western ridge and its associated low‐level jets. In one extreme of the dipole NASH‐SE, periods are associated with enhanced MPF precipitation along the coast and offshore for days at a time, and suppressed MPF precipitation inland. The opposite pattern occurs during NASH‐NW when MPF precipitation is enhanced inland and suppressed along the coast and offshore.

    « less
  2. Much of the eastern United States experienced increased precipitation over the twentieth century. Characterizing these trends and their causes is critical for assessing future hydroclimate risks. Here, U.S. precipitation trends are analyzed for 1895–2016, revealing that fall precipitation in the southeastern region north of the Gulf of Mexico (SE-Gulf) increased by nearly 40%, primarily increasing after the mid-1900s. Because fall is the climatological dry season in the SE-Gulf and precipitation in other seasons changed insignificantly, the seasonal precipitation cycle diminished substantially. The increase in SE-Gulf fall precipitation was caused by increased southerly moisture transport from the Gulf of Mexico, which was almost entirely driven by stronger winds associated with enhanced anticyclonic circulation west of the North Atlantic subtropical high (NASH) and not by increases in specific humidity. Atmospheric models forced by observed SSTs and fully coupled models forced by historical anthropogenic forcing do not robustly simulate twentieth-century fall wetting in the SE-Gulf. SST-forced atmospheric models do simulate an intensified anticyclonic low-level circulation around the NASH, but the modeled intensification occurred farther west than observed. CMIP5 analyses suggest an increased likelihood of positive SE-Gulf fall precipitation trends given historical and future GHG forcing. Nevertheless, individual model simulations (both SST forced andmore »fully coupled) only very rarely produce the observed magnitude of the SE-Gulf fall precipitation trend. Further research into model representation of the western ridge of the fall NASH is needed, which will help us to better predict whether twentieth-century increases in SE-Gulf fall precipitation will persist into the future.

    « less
  3. Abstract

    Between Florida and Cape Hatteras, North Carolina, the Gulf Stream carries warm, salty waters poleward along the continental slope. This strong current abuts the edge of the South Atlantic Bight (SAB) continental shelf and is thought to influence exchange of waters between the open ocean and the shelf. Observations from a pair of instruments deployed for 19 months in the northern SAB are used here to examine the processes by which the Gulf Stream can impact this exchange. The instrument deployed on the SAB shelf edge shows that the time‐averaged along‐slope flow is surface‐intensified with only few flow reversals at low frequencies (>40‐day period). Time‐averaged cross‐slope flow is onto the SAB shelf in a lower layer and off‐shelf above. Consistent with Ekman dynamics, the magnitude of lower‐layer on‐shelf flow is correlated with the along‐slope velocity, which is in turn controlled by the position and/or transport of the Gulf Stream that flows poleward along the SAB continental slope. In the frequency band associated with downstream‐propagating wave‐like meanders of the Gulf Stream jet (2‐15 day period), currents at the shelf‐edge are characterized by surface‐intensified flow in the along‐ and cross‐slope directions. Estimates of maximum upwelling velocities associated with cyclonic frontal eddies betweenmore »meander crests occasionally reach 100 m/day.

    « less
  4. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>
  5. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>