skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanisms for Springtime Onset of Isolated Precipitation across the Southeastern United States
This study uses four-year radar-based precipitation organization and reanalysis datasets to study the mechanisms that lead to the abrupt springtime onset of precipitation associated with isolated storms in the Southeast United States (SE US). Although the SE US receives relatively constant precipitation year-round, previous work demonstrated a “hidden” summertime maximum in isolated precipitation features (IPF) whose annual cycle resembles that of monsoon climates in the subtropics. In the SE US, IPF rain abruptly ramps up in May and lasts until sometime between late August and early October. This study suggests that the onset of the IPF season in the SE US is brought about by a combination of slow thermodynamic processes and fast dynamic triggers, as follows. First, in the weeks prior to IPF onset, a gradual seasonal build-up of convective available potential energy (CAPE) occurs in the Gulf of Mexico. Then, in one-to-two pentads prior to onset, the upper-tropospheric jet stream shifts northward, favoring the presence of slow-moving frontal systems in the SE US. This poleward shift in the jet stream location in turn allows the establishment of the North Atlantic subtropical high western ridge over the SE US which, with associated poleward transport of high CAPE air from the Gulf of Mexico, leads to the establishment of the warm-season regime of IPF precipitation in the SE US.  more » « less
Award ID(s):
1660049
PAR ID:
10222241
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Atmosphere
Volume:
12
Issue:
2
ISSN:
2073-4433
Page Range / eLocation ID:
213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study analyzes the effect of the location of the North Atlantic Subtropical High (NASH) western ridge on the daily variability of precipitation organization in the southeastern United States (SE US). The western side of the NASH, also known as the NASH western ridge, plays an important role in the variability of summertime precipitation in this region. In this study, the mean summertime position of the NASH western ridge was determined and used to classify each summer day during 2009–2012 into one of four quadrants. Composites of synoptic‐scale circulation and precipitation from mesoscale and isolated precipitation features (MPF and IPF) were calculated for each NASH western ridge quadrant. MPF contributed most (about 65%) of the total summertime precipitation and accounted for most of the differences between the four NASH quadrants. Domain‐averaged precipitation was highest (lowest) during NASH‐SW (NASH‐NW) when IPF (MPF) precipitation was strongest (weakest). The regionality of MPF precipitation maxima was generally associated with the location of low‐level jets and upper‐level troughs. For instance, positive MPF anomalies occurred across the SE US during NASH‐SW when the Great Plains low‐level jet turned eastward bringing moisture to fuel convection in the SE US. In contrast, IPF rain was distributed more uniformly across the SE US. Finally, this study revealed a dipole of precipitation that is controlled by the position of the NASH western ridge and its associated low‐level jets. In one extreme of the dipole NASH‐SE, periods are associated with enhanced MPF precipitation along the coast and offshore for days at a time, and suppressed MPF precipitation inland. The opposite pattern occurs during NASH‐NW when MPF precipitation is enhanced inland and suppressed along the coast and offshore. 
    more » « less
  2. Much of the eastern United States experienced increased precipitation over the twentieth century. Characterizing these trends and their causes is critical for assessing future hydroclimate risks. Here, U.S. precipitation trends are analyzed for 1895–2016, revealing that fall precipitation in the southeastern region north of the Gulf of Mexico (SE-Gulf) increased by nearly 40%, primarily increasing after the mid-1900s. Because fall is the climatological dry season in the SE-Gulf and precipitation in other seasons changed insignificantly, the seasonal precipitation cycle diminished substantially. The increase in SE-Gulf fall precipitation was caused by increased southerly moisture transport from the Gulf of Mexico, which was almost entirely driven by stronger winds associated with enhanced anticyclonic circulation west of the North Atlantic subtropical high (NASH) and not by increases in specific humidity. Atmospheric models forced by observed SSTs and fully coupled models forced by historical anthropogenic forcing do not robustly simulate twentieth-century fall wetting in the SE-Gulf. SST-forced atmospheric models do simulate an intensified anticyclonic low-level circulation around the NASH, but the modeled intensification occurred farther west than observed. CMIP5 analyses suggest an increased likelihood of positive SE-Gulf fall precipitation trends given historical and future GHG forcing. Nevertheless, individual model simulations (both SST forced and fully coupled) only very rarely produce the observed magnitude of the SE-Gulf fall precipitation trend. Further research into model representation of the western ridge of the fall NASH is needed, which will help us to better predict whether twentieth-century increases in SE-Gulf fall precipitation will persist into the future. 
    more » « less
  3. This study examines the geographic and temporal characteristics of the springtime transition to the summer precipitation regime of isolated convection in the southeastern (SE) United States during 2009–12, using a high-resolution surface radar-based precipitation dataset. Isolated convection refers herein to isolated elements or small clusters of precipitation in radar imagery less than 100 km in horizontal dimension. Though the SE United States does not have a monsoon climate, it is useful to apply the established framework of monsoon onset to study the timing and regional variation of the onset of the summer isolated convection regime. Overall, isolated convection rain onset in the SE U.S. domain occurs in late May. Onset begins in south Florida in mid-April, continuing nearly simultaneously across the southeastern coastal plain in early to mid-May. In the northern domain, from Virginia to the Ohio Valley, onset generally occurs much later (mid-June to early July) with more variable onset timing. The sharpness of onset timing is most evident in the coastal plain and Florida. Results suggest the hypothesis, to be examined in a forthcoming study, that the timing of isolated convection onset in the spring may be triggered by specific synoptic-scale events within gradual seasonal changes in atmospheric conditions including extratropical cyclone tracks, convective instability, and the westward migration of the North Atlantic subtropical high. This approach may offer a useful framework for evaluating long-term changes in precipitation for subtropical regimes in an observational and modeling context. 
    more » « less
  4. Abstract The Gulf Stream affects global climate by transporting water and heat poleward. The current’s volume transport increases markedly along the U.S. East Coast. An extensive observing program using autonomous underwater gliders provides finescale, subsurface observations of hydrography and velocity spanning more than 15° of latitude along the path of the Gulf Stream, thereby filling a 1500-km-long gap between long-term transport measurements in the Florida Strait and downstream of Cape Hatteras. Here, the glider-based observations are combined with shipboard measurements along Line W near 68°W to provide a detailed picture of the along-stream transport increase. To account for the influences of Gulf Stream curvature and adjacent circulation (e.g., corotating eddies) on transport estimates, upper- and lower-bound transports are constructed for each cross–Gulf Stream transect. The upper-bound estimate for time-averaged volume transport above 1000 m is 32.9 ± 1.2 Sv (1 Sv ≡ 106 m3 s−1) in the Florida Strait, 57.3 ± 1.9 Sv at Cape Hatteras, and 75.6 ± 4.7 Sv at Line W. Corresponding lower-bound estimates are 32.3 ± 1.1 Sv in the Florida Strait, 54.5 ± 1.7 Sv at Cape Hatteras, and 69.9 ± 4.2 Sv at Line W. Using the temperature and salinity observations from gliders and Line W, waters are divided into seven classes to investigate the properties of waters that are transported by and entrained into the Gulf Stream. Most of the increase in overall Gulf Stream volume transport above 1000 m stems from the entrainment of subthermocline waters, including upper Labrador Sea Water and Eighteen Degree Water. 
    more » « less
  5. Takeyoshi Nagai, Hiroaki Saito (Ed.)
    The Gulf Stream transports macronutrients poleward as a part of the Atlantic meridional overturning circulation (AMOC). Scaling shows that this advective transport is greater than diapycnal transport from deep convection in the North Atlantic and is therefore crucial for sustaining the nutrient supply to the subpolar North Atlantic on interannual timescales. Simulations of the RCP8.5 emissions scenario with the Community Earth System Model (CESM) reveal 25% declines in the Gulf Stream volume transport above the potential density surface σθ = 27.5 kg/m3 and 35% declines in the associated nitrate transport between 2006 and 2080. The declining Gulf Stream transport largely explains contemporaneous 40% declines in zonally‐integrated volume and nitrate transports in the subtropical part of the AMOC. In addition, scaling suggests that the declining Gulf Stream nitrate transport (2.4 kmol/s per year) is the dominant driver of the declining export of particulate organic nitrogen across σθ = 27.5 kg/m3 in the subpolar North Atlantic (0.57 kmol/s per year), because the declining nitrate entrainment from water with σθ > 27.5 kg/m3 is only 0.44 kmol/s per year. A review of various small‐scale ocean physical processes suggests that the projected decline in the Gulf Stream nutrient flux is qualitatively robust to uncertainties associated with ocean physics. 
    more » « less