skip to main content

Title: Investigating the Causes of Increased Twentieth-Century Fall Precipitation over the Southeastern United States

Much of the eastern United States experienced increased precipitation over the twentieth century. Characterizing these trends and their causes is critical for assessing future hydroclimate risks. Here, U.S. precipitation trends are analyzed for 1895–2016, revealing that fall precipitation in the southeastern region north of the Gulf of Mexico (SE-Gulf) increased by nearly 40%, primarily increasing after the mid-1900s. Because fall is the climatological dry season in the SE-Gulf and precipitation in other seasons changed insignificantly, the seasonal precipitation cycle diminished substantially. The increase in SE-Gulf fall precipitation was caused by increased southerly moisture transport from the Gulf of Mexico, which was almost entirely driven by stronger winds associated with enhanced anticyclonic circulation west of the North Atlantic subtropical high (NASH) and not by increases in specific humidity. Atmospheric models forced by observed SSTs and fully coupled models forced by historical anthropogenic forcing do not robustly simulate twentieth-century fall wetting in the SE-Gulf. SST-forced atmospheric models do simulate an intensified anticyclonic low-level circulation around the NASH, but the modeled intensification occurred farther west than observed. CMIP5 analyses suggest an increased likelihood of positive SE-Gulf fall precipitation trends given historical and future GHG forcing. Nevertheless, individual model simulations (both SST forced and more » fully coupled) only very rarely produce the observed magnitude of the SE-Gulf fall precipitation trend. Further research into model representation of the western ridge of the fall NASH is needed, which will help us to better predict whether twentieth-century increases in SE-Gulf fall precipitation will persist into the future.

« less
 ;  ;  ;  ;  ;  ;  ;  ;  
Award ID(s):
Publication Date:
Journal Name:
Journal of Climate
Page Range or eLocation-ID:
p. 575-590
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Southeastern South America (SESA; encompassing Paraguay, Southern Brazil, Uruguay, and northern Argentina) experienced a 27% increase in austral summer precipitation from 1902-2019, one of the largest observed trends in seasonal precipitation globally. Previous research identifies Atlantic Multidecadal Variability and anthropogenic forcing from stratospheric ozone depletion and greenhouse gas emissions as key factors contributing to the positive precipitation trends in SESA. We analyze multi-model ensemble simulations from Phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP) and find that not only do Earth System Models simulate positive SESA precipitation trends that are much weaker over the historical interval, but some models persistently simulate negative SESA precipitation trends under historical forcings. Similarly, 16-member ensembles from two atmospheric models forced with observed historical sea surface temperatures never simulate precipitation trends that even reach the lower bound of the observed trend’s range of uncertainty. Moreover, while future 21 st -century projections from CMIP6 yield positive ensemble mean precipitation trends over SESA that grow with increasing greenhouse-gas emissions, the mean forced response never exceeds the observed historical trend. Pre-industrial control runs from CMIP6 indicate that some models do occasionally simulate centennial-scale trends in SESA that fall within the observational range, but mostmore »models do not. Results point to significant uncertainties in the attribution of anthropogenically forced influences on the observed increases in precipitation over SESA, while also suggesting that internal decadal-to-centennial variability of unknown origin and not present in state-of-the-art models may have also played a large role in generating the 20 th -21 st -century SESA precipitation trend.« less
  2. Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions inmore »1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections.« less
  3. A well-known exception to rising sea surface temperatures (SST) across the globe is the subpolar North Atlantic, where SST has been declining at a rate of 0.39 (± 0.23) K century−1 during the 1900–2017 period. This cold blob has been hypothesized to result from a slowdown of the Atlantic Meridional Overturning Circulation (AMOC). Here, observation-based evidence is used to suggest that local atmospheric forcing can also contribute to the century-long cooling trend. Specifically, a 100-year SST trend simulated by an idealized ocean model forced by historical atmospheric forcing over the cold blob region matches 92% (± 77%) of the observed cooling trend. The data-driven simulations suggest that 54% (± 77%) of the observed cooling trend is the direct result of increased heat loss from the ocean induced by the overlying atmosphere, while the remaining 38% is due to strengthened local convection. An analysis of surface wind eddy kinetic energy suggests that the atmosphere-induced cooling may be linked to a northward migration of the jet stream, which exposes the subpolar North Atlantic to intensified storminess.
  4. Abstract

    The trends over recent decades in tropical Pacific sea surface and upper ocean temperature are examined in observations-based products, an ocean reanalysis and the latest models from the Coupled Model Intercomparison Project phase six and the Multimodel Large Ensembles Archive. Comparison is made using three metrics of sea surface temperature (SST) trend—the east–west and north–south SST gradients and a pattern correlation for the equatorial region—as well as change in thermocline depth. It is shown that the latest generation of models persist in not reproducing the observations-based SST trends as a response to radiative forcing and that the latter are at the far edge or beyond the range of modeled internal variability. The observed combination of thermocline shoaling and lack of warming in the equatorial cold tongue upwelling region is similarly at the extreme limit of modeled behavior. The persistence over the last century and a half of the observed trend toward an enhanced east–west SST gradient and, in four of five observed gridded datasets, to an enhanced equatorial north–south SST gradient, is also at the limit of model behavior. It is concluded that it is extremely unlikely that the observed trends are consistent with modeled internal variability. Instead, themore »results support the argument that the observed trends are a response to radiative forcing in which an enhanced east–west SST gradient and thermocline shoaling are key and that the latest generation of climate models continue to be unable to simulate this aspect of climate change.

    « less
  5. Abstract This paper attempts to enhance our understanding of the causes of Atlantic Multidecadal Variability, the AMV. Following the literature, we define the AMV as the SST averaged over the North Atlantic basin, linearly detrended and low-pass filtered. There is an ongoing debate about the drivers of the AMV, which include internal variability generated from the ocean or atmosphere (or both), and external radiative forcing. We test the role of these factors in explaining the time history, variance, and spatial pattern of the AMV using a 41-member ensemble from a fully coupled version of CESM and a 10-member ensemble of the CESM atmosphere coupled to a slab ocean. The large ensemble allows us to isolate the role of external forcing versus internal variability, and the model differences allow us to isolate the role of coupled ocean circulation. Both with and without coupled ocean circulation, external forcing explains more than half of the variance of the observed AMV time series, indicating its important role in simulating the 20 th century AMV phases. In this model the net effect of ocean processes is to reduce the variance of the AMV. Dynamical ocean coupling also reduces the ability of the model to simulatemore »the characteristic spatial pattern of the AMV, but forcing has little impact on the pattern. Historical forcing improves the time history and variance of the AMV simulation, whilst the more realistic ocean representation reduces the variance below that observed and lowers the correlation with observations.« less