skip to main content


Title: North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling is needed for understanding regional implications of solar radiation management
Abstract. The realization of the difficulty of limiting global-meantemperatures to within 1.5 or 2.0 ∘C abovepre-industrial levels stipulated by the 21st Conference of Parties inParis has led to increased interest in solar radiation management (SRM)techniques. Proposed SRM schemes aim to increase planetary albedo to reflectmore sunlight back to space and induce a cooling that acts to partiallyoffset global warming. Under the auspices of the Geoengineering ModelIntercomparison Project, we have performed model experiments whereby globaltemperature under the high-forcing SSP5-8.5 scenario is reduced to followthat of the medium-forcing SSP2-4.5 scenario. Two different mechanisms toachieve this are employed: the first via a reduction in the solar constant(experiment G6solar) and the second via modelling injections of sulfurdioxide (experiment G6sulfur) which forms sulfate aerosol in thestratosphere. Results from two state-of-the-art coupled Earth system models(UKESM1 and CESM2-WACCM6) both show an impact on the North AtlanticOscillation (NAO) in G6sulfur but not in G6solar. Both models show apersistent positive anomaly in the NAO during the Northern Hemisphere winterseason in G6sulfur, suggesting an increase in zonal flow and an increase inNorth Atlantic storm track activity impacting the Eurasian continent and leadingto high-latitude warming over Europe and Asia. These results are broadlyconsistent with previous findings which show similar impacts fromstratospheric volcanic aerosol on the NAO and emphasize that detailedmodelling of geoengineering processes is required if accurate impacts of SRMeffects are to be simulated. Differences remain between the two models inpredicting regional changes over the continental USA and Africa, suggestingthat more models need to perform such simulations before attempting to drawany conclusions regarding potential continental-scale climate change underSRM.  more » « less
Award ID(s):
2017113 1931641
NSF-PAR ID:
10222320
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
2
ISSN:
1680-7324
Page Range / eLocation ID:
1287 to 1304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiments G6sulfur and G6solar for six Earth system models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming that results from a high-tier emission scenario (Shared Socioeconomic Pathways SSP5-8.5) to that resulting from a medium-tier emission scenario (SSP2-4.5). These simulations aim to analyze the response of climate models to a reduction in incoming surface radiation as a means to reduce global surface temperatures, and they do so either by simulating a stratospheric sulfate aerosol layer or, in a more idealized way, through a uniform reduction in the solar constant in the model. We find that over the final two decades of this century there are considerable inter-model spreads in the needed injection amounts of sulfate (29 ± 9 Tg-SO2/yr between 2081 and 2100), in the latitudinal distribution of the aerosol cloud and in the stratospheric temperature changes resulting from the added aerosol layer. Even in the simpler G6solar experiment, there is a spread in the needed solar dimming to achieve the same global temperature target (1.91 ± 0.44 %). The analyzed models already show significant differences in the response to the increasing CO2 concentrations for global mean temperatures and global mean precipitation (2.05 K ± 0.42 K and 2.28 ± 0.80 %, respectively, for SSP5-8.5 minus SSP2-4.5 averaged over 2081–2100). With aerosol injection, the differences in how the aerosols spread further change some of the underlying uncertainties, such as the global mean precipitation response (−3.79 ± 0.76 % for G6sulfur compared to −2.07 ± 0.40 % for G6solar against SSP2-4.5 between 2081 and 2100). These differences in the behavior of the aerosols also result in a larger uncertainty in the regional surface temperature response among models in the case of the G6sulfur simulations, suggesting the need to devise various, more specific experiments to single out and resolve particular sources of uncertainty. The spread in the modeled response suggests that a degree of caution is necessary when using these results for assessing specific impacts of geoengineering in various aspects of the Earth system. However, all models agree that compared to a scenario with unmitigated warming, stratospheric aerosol geoengineering has the potential to both globally and locally reduce the increase in surface temperatures. 
    more » « less
  2. Abstract

    Climate change has been projected to increase the intensity and magnitude of extreme temperature in Indonesia. Solar radiation management (SRM) has been proposed as a strategy to temporarily combat global warming, buying time for negative emissions. Although the global impacts of SRM have been extensively studied in recent years, regional impacts, especially in the tropics, have received much less attention. This article investigates the potential stratospheric sulphate aerosol injection (SAI) to modify mean and extreme temperature, as well as the relative humidity and wet bulb temperature (WBT) change over Indonesian Maritime Continent (IMC) based on simulations from three different earth system models. We applied a simple downscaling method and corrected the bias of model output to reproduce historical temperatures and relative humidity over IMC. We evaluated changes in geoengineering model intercomparison project (GeoMIP) experiment G4, an SAI experiment in 5 Tg of SO2into the equatorial lower stratosphere between 2020 and 2069, concurrent with the RCP4.5 emissions scenario. G4 is able to significantly reduce the temperature means and extremes, and although differences in magnitude of response and spatial pattern occur, there is a generally consistent response. The spatial response of changes forced by RCP4.5 scenario and G4 are notably heterogeneous in the archipelago, highlighting uncertainties that would be critical in assessing socio‐economic consequences of both doing, and not doing G4. In general, SAI has bigger impacts in reducing temperatures over land than oceans, and the southern monsoon region shows more variability. G4 is also effective at reducing the likelihood of WBT > 27°C events compared with RCP4.5 after some years of SAI deployment as well as during the post‐termination period of SAI. Regional downscaling may be an effective tool in obtaining policy‐relevant information about local effects of different future scenarios involving SAI.

     
    more » « less
  3. Abstract. As part of the Geoengineering Model IntercomparisonProject a numerical experiment known as G6sulfur has been designed in whichtemperatures under a high-forcing future scenario (SSP5-8.5) are reduced tothose under a medium-forcing scenario (SSP2-4.5) using the proposedgeoengineering technique of stratospheric aerosol intervention (SAI).G6sulfur involves introducing sulfuric acid aerosol into the tropicalstratosphere where it reflects incoming sunlight back to space, thus coolingthe planet. Here, we compare the results from six Earth-system models thathave performed the G6sulfur experiment and examine how SAI affects twoimportant modes of natural variability, the northern wintertime NorthAtlantic Oscillation (NAO) and the Quasi-Biennial Oscillation (QBO).Although all models show that SAI is successful in reducing global meantemperature as designed, they are also consistent in showing that it forcesan increasingly positive phase of the NAO as the injection rate increasesover the course of the 21st century, exacerbating precipitationreductions over parts of southern Europe compared with SSP5-8.5. In contrast to the robust result for the NAO, there is less consistency for the impact on the QBO, but the results nevertheless indicate a risk that equatorial SAI could cause the QBO to stall and become locked in a phase with permanent westerly winds in the lower stratosphere. 
    more » « less
  4. Abstract. We quantify future changes in wildfire burned area and carbon emissions inthe 21st century under four Shared Socioeconomic Pathways (SSPs) scenariosand two SSP5-8.5-based solar geoengineering scenarios with a target surfacetemperature defined by SSP2-4.5 – solar irradiance reduction (G6solar) andstratospheric sulfate aerosol injections (G6sulfur) – and explore themechanisms that drive solar geoengineering impacts on fires. This study isbased on fully coupled climate–chemistry simulations with simulatedoccurrence of fires (burned area and carbon emissions) using the WholeAtmosphere Community Climate Model version 6 (WACCM6) as the atmosphericcomponent of the Community Earth System Model version 2 (CESM2). Globally,total wildfire burned area is projected to increase over the 21st centuryunder scenarios without geoengineering and decrease under the twogeoengineering scenarios. By the end of the century, the two geoengineeringscenarios have lower burned area and fire carbon emissions than not onlytheir base-climate scenario SSP5-8.5 but also the targeted-climate scenarioSSP2-4.5. Geoengineering reduces wildfire occurrence by decreasing surfacetemperature and wind speed and increasing relative humidity and soil water,with the exception of boreal regions where geoengineering increases theoccurrence of wildfires due to a decrease in relative humidity and soilwater compared with the present day. This leads to a global reduction in burnedarea and fire carbon emissions by the end of the century relative to theirbase-climate scenario SSP5-8.5. However, geoengineering also yieldsreductions in precipitation compared with a warming climate, which offsetssome of the fire reduction. Overall, the impacts of the different drivingfactors are larger on burned area than fire carbon emissions. In general,the stratospheric sulfate aerosol approach has a stronger fire-reducingeffect than the solar irradiance reduction approach.

     
    more » « less
  5. Abstract. Solar climate intervention using stratospheric aerosol injection (SAI) has been proposed as a method which could offset some of the adverse effects of global warming. The Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE-SAI) set of simulations is based on a moderate-greenhouse-gas-emission scenario and employs injection of sulfur dioxide at four off-equatorial locations using a control algorithm which maintains the global-mean surface temperature at 1.5 K above pre-industrial conditions (ARISE-SAI-1.5), as well as the latitudinal gradient and inter-hemispheric difference in surface temperature. This is the first comparison between two models (CESM2 and UKESM1) applying the same multi-target SAI strategy. CESM2 is successful in reaching its temperature targets, but UKESM1 has considerable residual Arctic warming. This occurs because the pattern of temperature change in a climate with SAI is determined by both the structure of the climate forcing (mainly greenhouse gases and stratospheric aerosols) and the climate models' feedbacks, the latter of which favour a strong Arctic amplification of warming in UKESM1. Therefore, research constraining the level of future Arctic warming would also inform any hypothetical SAI deployment strategy which aims to maintain the inter-hemispheric and Equator-to-pole near-surface temperature differences. Furthermore, despite broad agreement in the precipitation response in the extratropics, precipitation changes over tropical land show important inter-model differences, even under greenhouse gas forcing only. In general, this ensemble comparison is the first step in comparing policy-relevant scenarios of SAI and will help in the design of an experimental protocol which both reduces some known negative side effects of SAI and is simple enough to encourage more climate models to participate.

     
    more » « less