The Birch reduction dearomatizes arenes into 1,4-cyclohexadienes. Despite substantial efforts devoted to avoiding ammonia and cryogenic conditions, the traditional, cumbersome, and dangerous procedure remains the standard. The Benkeser reduction with lithium in ethylenediamine converts arenes to a mixture of cyclohexenes and cyclohexanes; this is operationally easier than the Birch reduction but does not afford 1,4-cyclohexadienes. Here, we report a Birch reduction promoted by lithium and ethylenediamine (or analogs) in tetrahydrofuran at ambient temperature. Our method is easy to set up, inexpensive, scalable, rapid, accessible to any chemical laboratory, and capable of reducing both electron-rich and electron-deficient substrates. Our protocol is also compatible with organocuprate chemistry for further functionalization.
more »
« less
Rapid Enantioselective and Diastereoconvergent Hybrid Organic/Biocatalytic Entry into the Oseltamivir Core
Hybrid synthetic organic/biocatalytic entry into the Tamiflu core, utilizing KRED-reporting enzymes from ISES (In Situ Enzymatic Screening) to set the stereochemistry. The key alpha,beta-unsaturated ketone substrate is obtained by Birch reduction from m-anisic acid. The Birch reduction is conducted either by traditional dissolving metal conditions, or by the electrosynthetic variant recently reported by P. Baran and co-workers. The enzymatic step is novel in that one stereocenter is 'dialed in' almost perfect (i.e. nearly perfect facial selectivity is shown ) whereas the pre-existing stereocenter is 'dialed out' almost perfectly, as desired, to give complete throughput. Following enzymatic reduction, the C-O stereocenter that was set enzymatically is parlayed into a the C-N stereocenter required for Tamiflu. This paper has been selected for the cover of JOC
more »
« less
- Award ID(s):
- 1800574
- PAR ID:
- 10222339
- Date Published:
- Journal Name:
- The Journal of Organic Chemistry
- ISSN:
- 0022-3263
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Birch reduction of biaryls generally converts one of the two arenes into a cyclohexa-1,4-diene. Biaryls are more reactive than monocyclic arenes under the Birch conditions. Unlike the reduction of monocyclic arenes, biaryl reduction proceeds through two consecutive electron transfer steps before the protonation of the dianion intermediate. The biaryl reductions and subsequent alkylations in one pot rapidly increase the molecular complexity and thus have been used in the synthesis of natural products and drug-like molecules. 1 Introduction 2 The Physical Organic Chemistry of the Birch Reduction of Biaryls 3 Biaryls as the Mediators of Electron Transfer 4 Methods for the Dissolving-Metal Reduction of Biaryls 5 Intercepting the Biaryl Reduction Intermediates with Electrophiles 6 Synthetic Applications of the Dissolving-Metal-Mediated Reductions of Biaryls 7 Outlookmore » « less
-
Camps-Valls, G.; Ruiz, F. J.; Valera, I. (Ed.)Knowing when a graphical model perfectly encodes the conditional independence structure of a distribution is essential in applications, and this is particularly important when performing inference from data. When the model is perfect, there is a one-to-one correspondence between conditional independence statements in the distribution and separation statements in the graph. Previous work has shown that almost all models based on linear directed acyclic graphs as well as Gaussian chain graphs are perfect, the latter of which subsumes Gaussian graphical models (i.e., the undirected Gaussian models) as a special case. In this paper, we directly approach the problem of perfectness for the Gaussian graphical models, and provide a new proof, via a more transparent parametrization, that almost all such models are perfect. Our approach is based on, and substantially extends, a construction of Lněnička and Matúš showing the existence of a perfect Gaussian distribution for any graph. The analysis involves constructing a probability measure on the set of normalized covariance matrices Markov with respect to a graph that may be of independent interest.more » « less
-
Abstract Binding and activation of CO by nitrogenase is a topic of interest because CO is isoelectronic to N2, the physiological substrate of this enzyme. The catalytic relevance of one‐ and multi‐CO‐bound states (the lo‐CO and hi‐CO states) of V‐nitrogenase to C−C coupling and N2reduction was examined. Enzymatic and spectroscopic studies demonstrate that the multiple CO moieties in the hi‐CO state cannot be coupled as they are, suggesting that C−C coupling requires further activation and/or reduction of the bound CO entity. Moreover, these studies reveal an interesting correlation between decreased activity of N2reduction and increased population of the lo‐CO state, pointing to the catalytic relevance of the belt Fe atoms that are bridged by the single CO moiety in the lo‐CO state. Together, these results provide a useful framework for gaining insights into the nitrogenase‐catalyzed reaction via further exploration of the utility of the lo‐CO conformation of V‐nitrogenase.more » « less
-
null (Ed.)Perchlorate (ClO4–) is a pervasive, harmful, and inert anion on both Earth and Mars. Current technologies for ClO4– reduction entail either harsh conditions or multicomponent enzymatic processes. Herein, we report a heterogeneous (L)Mo–Pd/C catalyst directly prepared from Na2MoO4, a bidentate nitrogen ligand (L), and Pd/C to reduce aqueous ClO4– into Cl– with 1 atm of H2 at room temperature. A suite of instrument characterizations and probing reactions suggest that the MoVI precursor and L at the optimal 1:1 ratio are transformed in situ into oligomeric MoIV active sites at the carbon–water interface. For each Mo site, the initial turnover frequency (TOF0) for oxygen atom transfer from ClOx– substrates reached 165 h–1. The turnover number (TON) reached 3840 after a single batch reduction of 100 mM ClO4–. This study provides a water-compatible, efficient, and robust catalyst to degrade and utilize ClO4– for water purification and space exploration.more » « less
An official website of the United States government

