skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanistic and Synthetic Studies of Biaryl Birch Reductions
Abstract The Birch reduction of biaryls generally converts one of the two arenes into a cyclohexa-1,4-diene. Biaryls are more reactive than monocyclic arenes under the Birch conditions. Unlike the reduction of monocyclic arenes, biaryl reduction proceeds through two consecutive electron transfer steps before the protonation of the dianion intermediate. The biaryl reductions and subsequent alkylations in one pot rapidly increase the molecular complexity and thus have been used in the synthesis of natural products and drug-like molecules. 1 Introduction 2 The Physical Organic Chemistry of the Birch Reduction of Biaryls 3 Biaryls as the Mediators of Electron Transfer 4 Methods for the Dissolving-Metal Reduction of Biaryls 5 Intercepting the Biaryl Reduction Intermediates with Electrophiles 6 Synthetic Applications of the Dissolving-Metal-Mediated Reductions of Biaryls 7 Outlook  more » « less
Award ID(s):
1955758
PAR ID:
10441792
Author(s) / Creator(s):
Date Published:
Journal Name:
Synthesis
Volume:
55
Issue:
05
ISSN:
0039-7881
Page Range / eLocation ID:
707 to 718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Birch reduction dearomatizes arenes into 1,4-cyclohexadienes. Despite substantial efforts devoted to avoiding ammonia and cryogenic conditions, the traditional, cumbersome, and dangerous procedure remains the standard. The Benkeser reduction with lithium in ethylenediamine converts arenes to a mixture of cyclohexenes and cyclohexanes; this is operationally easier than the Birch reduction but does not afford 1,4-cyclohexadienes. Here, we report a Birch reduction promoted by lithium and ethylenediamine (or analogs) in tetrahydrofuran at ambient temperature. Our method is easy to set up, inexpensive, scalable, rapid, accessible to any chemical laboratory, and capable of reducing both electron-rich and electron-deficient substrates. Our protocol is also compatible with organocuprate chemistry for further functionalization. 
    more » « less
  2. Reductive electrosynthesis has faced long-standing challenges in applications to complex organic substrates at scale. Here, we show how decades of research in lithium-ion battery materials, electrolytes, and additives can serve as an inspiration for achieving practically scalable reductive electrosynthetic conditions for the Birch reduction. Specifically, we demonstrate that using a sacrificial anode material (magnesium or aluminum), combined with a cheap, nontoxic, and water-soluble proton source (dimethylurea), and an overcharge protectant inspired by battery technology [tris(pyrrolidino)phosphoramide] can allow for multigram-scale synthesis of pharmaceutically relevant building blocks. We show how these conditions have a very high level of functional-group tolerance relative to classical electrochemical and chemical dissolving-metal reductions. Finally, we demonstrate that the same electrochemical conditions can be applied to other dissolving metal–type reductive transformations, including McMurry couplings, reductive ketone deoxygenations, and epoxide openings. 
    more » « less
  3. null (Ed.)
    Hybrid synthetic organic/biocatalytic entry into the Tamiflu core, utilizing KRED-reporting enzymes from ISES (In Situ Enzymatic Screening) to set the stereochemistry. The key alpha,beta-unsaturated ketone substrate is obtained by Birch reduction from m-anisic acid. The Birch reduction is conducted either by traditional dissolving metal conditions, or by the electrosynthetic variant recently reported by P. Baran and co-workers. The enzymatic step is novel in that one stereocenter is 'dialed in' almost perfect (i.e. nearly perfect facial selectivity is shown ) whereas the pre-existing stereocenter is 'dialed out' almost perfectly, as desired, to give complete throughput. Following enzymatic reduction, the C-O stereocenter that was set enzymatically is parlayed into a the C-N stereocenter required for Tamiflu. This paper has been selected for the cover of JOC 
    more » « less
  4. Abstract Biaryl scaffolds are privileged templates used in the discovery and design of therapeutics with high affinity and specificity for a broad range of protein targets. Biaryls are found in the structures of therapeutics, including antibiotics, anti-inflammatory, analgesic, neurological and antihypertensive drugs. However, existing synthetic routes to biphenyls rely on traditional coupling approaches that require both arenes to be prefunctionalized with halides or pseudohalides with the desired regiochemistry. Therefore, the coupling of drug fragments may be challenging via conventional approaches. As an attractive alternative, directed C−H activation has the potential to be a versatile tool to form para -substituted biphenyl motifs selectively. However, existing C–H arylation protocols are not suitable for drug entities as they are hindered by catalyst deactivation by polar and delicate functionalities present alongside the instability of macrocyclic intermediates required for para -C−H activation. To address this challenge, we have developed a robust catalytic system that displays unique efficacy towards para -arylation of highly functionalized substrates such as drug entities, giving access to structurally diversified biaryl scaffolds. This diversification process provides access to an expanded chemical space for further exploration in drug discovery. Further, the applicability of the transformation is realized through the synthesis of drug molecules bearing a biphenyl fragment. Computational and experimental mechanistic studies further provide insight into the catalytic cycle operative in this versatile C−H arylation protocol. 
    more » « less
  5. Palladium-catalyzed Suzuki–Miyaura cross-coupling or aryl halides is widely employed in the synthesis of many important molecules in synthetic chemistry, including pharmaceuticals, polymers and functional materials. Herein, we disclose the first palladium-catalyzed decarbonylative Suzuki–Miyaura cross-coupling of amides for the synthesis of biaryls through the selective activation of the N–C(O) bond of amides. This new method relies on the precise sequence engineering of the catalytic cycle, wherein decarbonylation occurs prior to the transmetallation step. The reaction is compatible with a wide range of boronic acids and amides, providing valuable biaryls in high yields (>60 examples). DFT studies support a mechanism involving oxidative addition, decarbonylation and transmetallation and provide insight into high N–C(O) bond activation selectivity. Most crucially, the reaction establishes the use of palladium catalysis in the biaryl Suzuki–Miyaura cross-coupling of the amide bond and should enable the design of a wide variety of cross-coupling methods in which palladium rivals the traditional biaryl synthesis from aryl halides and pseudohalides. 
    more » « less