Alzheimer’s disease (AD) is the most common form of dementia and results in neurodegeneration and cognitive impairment. White matter (WM) is affected in AD and has implications for neural circuitry and cognitive function. The trajectory of these changes across age, however, is still not well understood, especially at earlier stages in life. To address this, we used theAppNL-G-F/NL-G-Fknock-in (APPKI) mouse model that harbors a single copy knock-in of the human amyloid precursor protein (APP) gene with three familial AD mutations. We performedin vivodiffusion tensor imaging (DTI) to study how the structural properties of the brain change across age in the context of AD. In late age APPKI mice, we observed reduced fractional anisotropy (FA), a proxy of WM integrity, in multiple brain regions, including the hippocampus, anterior commissure (AC), neocortex, and hypothalamus. At the cellular level, we observed greater numbers of oligodendrocytes in middle age (prior to observations in DTI) in both the AC, a major interhemispheric WM tract, and the hippocampus, which is involved in memory and heavily affected in AD, prior to observations in DTI. Proteomics analysis of the hippocampus also revealed altered expression of oligodendrocyte-related proteins with age and in APPKI mice. Together, these results help to improve our understanding of the development of AD pathology with age, and imply that middle age may be an important temporal window for potential therapeutic intervention. 
                        more » 
                        « less   
                    
                            
                            Symmetric data-driven fusion of diffusion tensor MRI: Age differences in white matter
                        
                    
    
            In the past 20 years, white matter (WM) microstructure has been studied predominantly using diffusion tensor imaging (DTI). Decreases in fractional anisotropy (FA) and increases in mean (MD) and radial diffusivity (RD) have been consistently reported in healthy aging and neurodegenerative diseases. To date, DTI parameters have been studied individually (e.g., only FA) and separately (i.e., without using the joint information across them). This approach gives limited insights into WM pathology, increases the number of multiple comparisons, and yields inconsistent correlations with cognition. To take full advantage of the information in a DTI dataset, we present the first application of symmetric fusion to study healthy aging WM. This data-driven approach allows simultaneous examination of age differences in all four DTI parameters. We used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) in cognitively healthy adults (age 20–33,n = 51 and age 60–79,n = 170). Four-way mCCA + jICA yielded one high-stability modality-shared component with co-variant patterns of age differences in RD and AD in the corpus callosum, internal capsule, and prefrontal WM. The mixing coefficients (or loading parameters) showed correlations with processing speed and fluid abilities that were not detected by unimodal analyses. In sum, mCCA + jICA allows data-driven identification of cognitively relevant multimodal components within the WM. The presented method should be further extended to clinical samples and other MR techniques (e.g., myelin water imaging) to test the potential of mCCA+jICA to discriminate between different WM disease etiologies and improve the diagnostic classification of WM diseases. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2112455
- PAR ID:
- 10569635
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Neurology
- Volume:
- 14
- ISSN:
- 1664-2295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Sex differences in brain structure significantly influence traumatic brain injury (TBI) onset and progression, yet this area is understudied. Herein, we developed sex-specific brain anatomical (macroscale) and axonal tract (mesoscale) templates and explored the sex variations at subject level using a set of T1-MRI (609 males, 721 females) and DTI images (506 males, 594 females). The FreeSurfer, ANTs, and DSI-Studio packages were used. We investigated overall/regional volumes, DTI metrics (including fractional anisotropy (FA), mean diffusivity, and radial diffusivity), and connectivity matrix across 23 brain regions. The brain connectome was derived by multiplying the fiber tract counts and the FA values within the connecting tracts, quantifying the connection strength within each pair of regions. Our subject-wise analysis revealed significant sex based differences (Mann-Whitney p-values < 0.05) across most studied regions for all parameters. The largest sex differences in brain connections were observed in five regions: corpus callosum and right/left cortex and cerebral white matter, all stronger in females. Brain regions were typically larger in males, yet females had higher fractional volumes in the majority of regions except for CSF and ventricles, known for their cushioning effect during head impacts. Additionally, the sex-specific templates better represented their targeted sex compared to opposite or mixed-sex populations as evaluated by root-mean-square-errors when comparing the DTI metrics and connectivity from the DTI templates against the median of subjects and deformation field in registering the subjects to the T1-MRI templates. Our findings highlight the necessity of sex-specific templates in accurate brain modeling and TBI research.more » « less
- 
            BackgroundA lack of in utero imaging data hampers our understanding of the connections in the human fetal brain. Generalizing observations from postmortem subjects and premature newborns is inaccurate due to technical and biological differences. PurposeTo evaluate changes in fetal brain structural connectivity between 23 and 35 weeks postconceptional age using a spatiotemporal atlas of diffusion tensor imaging (DTI). Study TypeRetrospective. PopulationPublicly available diffusion atlases, based on 60 healthy women (age 18–45 years) with normal prenatal care, from 23 and 35 weeks of gestation. Field Strength/Sequence3.0 Tesla/DTI acquired with diffusion‐weighted echo planar imaging (EPI). AssessmentWe performed whole‐brain fiber tractography from DTI images. The cortical plate of each diffusion atlas was segmented and parcellated into 78 regions derived from the Edinburgh Neonatal Atlas (ENA33). Connectivity matrices were computed, representing normalized fiber connections between nodes. We examined the relationship between global efficiency (GE), local efficiency (LE), small‐worldness (SW), nodal efficiency (NE), and betweenness centrality (BC) with gestational age (GA) and with laterality. Statistical TestsLinear regression was used to analyze changes in GE, LE, NE, and BC throughout gestation, and to assess changes in laterality. Thet‐tests were used to assess SW.P‐values were corrected using Holm‐Bonferroni method. A correctedP‐value <0.05 was considered statistically significant. ResultsNetwork analysis revealed a significant weekly increase in GE (5.83%/week, 95% CI 4.32–7.37), LE (5.43%/week, 95% CI 3.63–7.25), and presence of SW across GA. No significant hemisphere differences were found in GE (P = 0.971) or LE (P = 0.458). Increasing GA was significantly associated with increasing NE in 41 nodes, increasing BC in 3 nodes, and decreasing BC in 2 nodes. Data ConclusionExtensive network development and refinement occur in the second and third trimesters, marked by a rapid increase in global integration and local segregation. Level of Evidence3 Technical EfficacyStage 2more » « less
- 
            Background Schizophrenia is a brain disorder characterized by diffuse, diverse, and wide-spread changes in gray matter volume (GM) and white matter structure (fractional anisotropy, FA), as well as cognitive impairments that greatly impact an individual’s quality of life. While the relationship of each of these image modalities and their links to schizophrenia status and cognitive impairment has been investigated separately, a multimodal fusion via parallel independent component analysis (pICA) affords the opportunity to explore the relationships between the changes in GM and FA, and the implications these network changes have on cognitive performance. Methods Images from 73 subjects with schizophrenia (SZ) and 82 healthy controls (HC) were drawn from an existing dataset. We investigated 12 components from each feature (FA and GM). Loading coefficients from the images were used to identify pairs of features that were significantly correlated and showed significant group differences between HC and SZ. MANCOVA analysis uncovered the relationships the identified spatial maps had with age, gender, and a global cognitive performance score. Results Three component pairs showed significant group differences (HC > SZ) in both gray and white matter measurements. Two of the component pairs identified networks of gray matter that drove significant relationships with cognition (HC > SZ) after accounting for age and gender. The gray and white matter structural networks identified in these three component pairs pull broadly from many regions, including the right and left thalamus, lateral occipital cortex, multiple regions of the middle temporal gyrus, precuneus cortex, postcentral gyrus, cingulate gyrus/cingulum, lingual gyrus, and brain stem. Conclusion The results of this multimodal analysis adds to our understanding of how the relationship between GM, FA, and cognition differs between HC and SZ by highlighting the correlated intermodal covariance of these structural networks and their differential relationships with cognitive performance. Previous unimodal research has found similar areas of GM and FA differences between these groups, and the cognitive deficits associated with SZ have been well documented. This study allowed us to evaluate the intercorrelated covariance of these structural networks and how these networks are involved the differences in cognitive performance between HC and SZ.more » « less
- 
            Background: Sex differences impact Alzheimer’s disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. Objective: Examine how AD risk factors (age, APOE ɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. Methods: Individuals from the OASIS-3 cohort (age 42–95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). Results: In absence of AD risk factors (APOE ɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β= –0.007). Regression modeling including APOE ɛ4 allele carriers (Aβ–) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β= 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β= 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the Trail Making Test (p < 0.05). Conclusions: Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOE ɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOE ɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    