skip to main content


Title: A novel acidification mechanism for greatly enhanced oxygen supply to the fish retina
Previously, we showed that the evolution of high acuity vision in fishes was directly associated with their unique pH-sensitive hemoglobins that allow O 2 to be delivered to the retina at PO 2 s more than ten-fold that of arterial blood (Damsgaard et al., 2019). Here, we show strong evidence that vacuolar-type H + -ATPase and plasma-accessible carbonic anhydrase in the vascular structure supplying the retina act together to acidify the red blood cell leading to O 2 secretion. In vivo data indicate that this pathway primarily affects the oxygenation of the inner retina involved in signal processing and transduction, and that the evolution of this pathway was tightly associated with the morphological expansion of the inner retina. We conclude that this mechanism for retinal oxygenation played a vital role in the adaptive evolution of vision in teleost fishes.  more » « less
Award ID(s):
1754994
NSF-PAR ID:
10222414
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
9
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The retina has a very high energy demand but lacks an internal blood supply in most vertebrates. Here we explore the hypothesis that oxygen diffusion limited the evolution of retinal morphology by reconstructing the evolution of retinal thickness and the various mechanisms for retinal oxygen supply, including capillarization and acid-induced haemoglobin oxygen unloading. We show that a common ancestor of bony fishes likely had a thin retina without additional retinal oxygen supply mechanisms and that three different types of retinal capillaries were gained and lost independently multiple times during the radiation of vertebrates, and that these were invariably associated with parallel changes in retinal thickness. Since retinal thickness confers multiple advantages to vision, we propose that insufficient retinal oxygen supply constrained the functional evolution of the eye in early vertebrates, and that recurrent origins of additional retinal oxygen supply mechanisms facilitated the phenotypic evolution of improved functional eye morphology. 
    more » « less
  2. Abstract Background

    Complex organismal traits are often the result of multiple interacting genes and sub-organismal phenotypes, but how these interactions shape the evolutionary trajectories of adaptive traits is poorly understood. We examined how functional interactions between cardiorespiratory traits contribute to adaptive increases in the capacity for aerobic thermogenesis (maximal O2consumption,O2max, during acute cold exposure) in high-altitude deer mice (Peromyscus maniculatus). We crossed highland and lowland deer mice to produce F2inter-population hybrids, which expressed genetically based variation in hemoglobin (Hb) O2affinity on a mixed genetic background. We then combined physiological experiments and mathematical modeling of the O2transport pathway to examine the links between cardiorespiratory traits andO2max.

    Results

    Physiological experiments revealed that increases in Hb-O2affinity of red blood cells improved blood oxygenation in hypoxia but were not associated with an enhancement inO2max. Sensitivity analyses performed using mathematical modeling showed that the influence of Hb-O2affinity onO2max in hypoxia was contingent on the capacity for O2diffusion in active tissues.

    Conclusions

    These results suggest that increases in Hb-O2affinity would only have adaptive value in hypoxic conditions if concurrent with or preceded by increases in tissue O2diffusing capacity. In high-altitude deer mice, the adaptive benefit of increasing Hb-O2affinity is contingent on the capacity to extract O2from the blood, which helps resolve controversies about the general role of hemoglobin function in hypoxia tolerance.

     
    more » « less
  3. Purpose To investigate relationships between blood pressure and the thickness of single retinal layers in the macula. Methods Participants of the population-based Beijing Eye Study, free of retinal or optic nerve disease, underwent medical and ophthalmological examinations including optical coherence tomographic examination of the macula. Applying a multiple-surface segmentation solution, we automatically segmented the retina into its various layers. Results The study included 2237 participants (mean age 61.8±8.4 years, range 50–93 years). Mean thicknesses of the retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), inner plexiform layer, inner nuclear layer (INL), outer plexiform layer, outer nuclear layer/external limiting membrane, ellipsoid zone, photoreceptor outer segments (POS) and retinal pigment epithelium–Bruch membrane were 31.1±2.3 µm, 39.7±3.5 µm, 38.4±3.3 µm, 34.8±2.0 µm, 28.1±3.0 µm, 79.2±7.3 µm, 22.9±0.6 µm, 19.2±3.3 µm and 20.7±1.4 µm, respectively. In multivariable analysis, higher systolic blood pressure (SBP) and diastolic blood pressure (DBP) were associated with thinner GCL and thicker INL, after adjusting for age, sex and axial length (all p<0.0056). Higher SBP was additionally associated with thinner POS and higher DBP with thinner RNFL. For an elevation of SBP/DBP by 10 mm Hg, the RNFL, GCL, INL and POS changed by 2.0, 3.0, 1.5 and 2.0 µm, respectively. Conclusions Thickness of RNFL, GCL and POS was inversely and INL thickness was positively associated with higher blood pressure, while the thickness of the other retinal layers was not significantly correlated with blood pressure. The findings may be helpful for refinement of the morphometric detection of retinal diseases. 
    more » « less
  4. Impaired blood flow and oxygenation contribute to many ocular pathologies, including glaucoma. Here, a mathematical model is presented that combines an image-based heterogeneous representation of retinal arterioles with a compartmental description of capillaries and venules. The arteriolar model of the human retina is extrapolated from a previous mouse model based on confocal microscopy images. Every terminal arteriole is connected in series to compartments for capillaries and venules, yielding a hybrid model for predicting blood flow and oxygenation throughout the retinal microcirculation. A metabolic wall signal is calculated in each vessel according to blood and tissue oxygen levels. As expected, a higher average metabolic signal is generated in pathways with a lower average oxygen level. The model also predicts a wide range of metabolic signals dependent on oxygen levels and specific network location. For example, for high oxygen demand, a threefold range in metabolic signal is predicted despite nearly identical PO2 levels. This whole-network approach, including a spatially nonuniform structure, is needed to describe the metabolic status of the retina. This model provides the geometric and hemodynamic framework necessary to predict ocular blood flow regulation and will ultimately facilitate early detection and treatment of ischemic and metabolic disorders of the eye. 
    more » « less
  5. Atherosclerosis and vascular disease of larger arteries are often associated with hypoxia within the layers of the vascular wall. In this review, we begin with a brief overview of the molecular changes in vascular cells associated with hypoxia and then emphasize the transport mechanisms that bring oxygen to cells within the vascular wall. We focus on fluid mechanical factors that control oxygen transport from lumenal blood flow to the intima and inner media layers of the artery, and solid mechanical factors that influence oxygen transport to the adventitia and outer media via the wall's microvascular system—the vasa vasorum (VV). Many cardiovascular risk factors are associated with VV compression that reduces VV perfusion and oxygenation. Dysfunctional VV neovascularization in response to hypoxia contributes to plaque inflammation and growth. Disturbed blood flow in vascular bifurcations and curvatures leads to reduced oxygen transport from blood to the inner layers of the wall and contributes to the development of atherosclerotic plaques in these regions. Recent studies have shown that hypoxia-inducible factor-1α (HIF-1α), a critical transcription factor associated with hypoxia, is also activated in disturbed flow by a mechanism that is independent of hypoxia. A final section of the review emphasizes hypoxia in vascular stenting that is used to enlarge vessels occluded by plaques. Stenting can compress the VV leading to hypoxia and associated intimal hyperplasia. To enhance oxygen transport during stenting, new stent designs with helical centrelines have been developed to increase blood phase oxygen transport rates and reduce intimal hyperplasia. Further study of the mechanisms controlling hypoxia in the artery wall may contribute to the development of therapeutic strategies for vascular diseases. 
    more » « less