skip to main content

Title: In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si
Additive friction stir deposition is an emerging solid-state additive manufacturing technology that enables site-specific build-up of high-quality metals with fine, equiaxed microstructures and excellent mechanical properties. By incorporating proper machining, it has the potential to produce large-scale, complex 3D geometries. Still early in its development, a thorough understanding of the thermal process fundamentals, including temperature evolution and heat generation mechanisms, has not been established. Here, we aim to bridge this gap through in situmonitoring of the thermal field and material flow behavior using complementary infrared imaging, thermocouple measurement, and optical imaging. Two materials challenging to print via beam-based additive technologies, Cu and Al-Mg-Si, are investigated. During additive friction stir deposition of both materials, we find similar trends of thermal features (e.g., the trends of peak temperature , exposure time, and cooling rate) with respect to the processing conditions (e.g., the tool rotation rate and in-plane velocity ). However, there is a salient, quantitative difference between Cu and Al-Mg-Si; exhibits a power law relationship with / in Cu but with / in Al-Mg-Si. We correlate this difference to the distinct interfacial contact states that are observed through in situ material flow characterization. In Cu, the interfacial contact between the material and more » tool head is characterized by a full slipping condition, so interfacial friction is the dominant heat generation mechanism. In Al-Mg-Si, the interfacial contact is characterized by a partial slipping/sticking condition, so both interfacial friction and plastic energy dissipation contribute significantly to the heat generation. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Additive manufacturing
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Among metal additive manufacturing technologies, additive friction stir deposition stands out for its ability to create freeform and fully-dense structures without melting and solidification. Here, we employ a comparative approach to investigate the process-microstructure linkages in additive friction stir deposition, utilizing two materials with distinct thermomechanical behavior—an Al-Mg-Si alloy and Cu—both of which are challenging to print using beam-based additive processes. The deposited Al-Mg-Si is shown to exhibit a relatively homogeneous microstructure with extensive subgrain formation and a strong shear texture, whereas the deposited Cu is characterized by a wide distribution of grain sizes and a weaker shear texture. Wemore »show evidence that the microstructure in Al-Mg-Si primarily evolves by continuous dynamic recrystallization, including geometric dynamic recrystallization and progressive lattice rotation, while the heterogeneous microstructure of Cu results from discontinuous recrystallization during both deposition and cooling. In Al-Mg-Si, the continuous recrystallization progresses with an increase of the applied strain, which correlates with the ratio between the tool rotation rate and travel velocity. Conversely, the microstructure evolution in Cu is found to be less dependent on , instead varying more with changes to . This difference originates from the absence of Cu rotation in the deposition zone, which reduces the influence of tool rotation on strain development. We attribute the distinct process-microstructure linkages and the underlying mechanisms between Al-Mg-Si and Cu to their differences in intrinsic thermomechanical properties and interactions with the tool head.« less
  2. Additive friction stir deposition (AFSD) is an emerging solid-state metal additive manufacturing technology renowned for strong interface adhesion and isotropic mechanical properties. This is postulated to result from the material flow phenomena near the interface, but experimental corroboration has remained absent. Here, we seek to understand the interface formed in AFSD via morphological and microstructural investigation, wherein the non-planar interfacial morphology is characterized on the track-scale (centimeter scale) using X-ray computed tomography and the material deformation history is explored by microstructure mapping at the interfacial regions. X-ray computed tomography reveals unique 3D features at the interface with significant macroscopic materialmore »mixing. In the out-of-plane direction, the deposited material inserts below the initial substrate surface in the feed-rod zone, while the substrate surface surges upwards in the tool protrusion-affected zone. Complex 3D structures like fins and serrations form on the advancing side, leading to structural interlocking; on the retreating side, the interface manifests as a smooth sloped surface. Microstructure mapping reveals a uniform thermomechanical history for the deposited material, which develops a homogeneous, almost fully recrystallized microstructure. The substrate surface develops partially recrystallized microstructures that are location-dependent; more intra-granular orientation gradients are found in the regions further away from the centerline of the deposition track. From these observations, we discuss the mechanisms for interfacial material flow and interface morphology formation during AFSD.« less
  3. The friction surfacing technique is an advanced method for creating coatings of various materials onto the surface of a similar or dissimilar material substrate. In this method, there is no external source of heat energy, and all the heat energy required in this method is generated by friction. In this paper, a novel method of friction surfacing from the side of the consumable tool is introduced. The most significant difference in this technique is that material transfer will occur from the radial surface of the consumable tool as opposed to the end of the tool as in conventional friction surfacing.more »In lateral friction surfacing, the side of the rotating consumable tool is pressed against the substrate surface, which generates frictional heating and shear forces at the interface between tool and substrate. A layer of tool material is transferred from the consumable rod to the substrate surface as the tool moves across. In this study, 6063 aluminum alloy and AISI 1018 carbon steel are used as the materials of consumable tool and substrate, respectively. The impact of process factors, surface roughness values, tool mass loss, and deposition thickness are discussed in detail. The experimental results of this study reveal that lateral friction surfacing produces a very smooth ultra-thin deposition with full coverage, with coating layers with roughness values in the order of 1 µm. Additionally, there is no flash formed in this technique which reduces material consumption. Moreover, temperatures at the interface between the consumable tool and workpiece were measured to be lower than for that in friction surfacing from the end of the tool, which is beneficial for the metallurgical characteristics of the deposited material.« less
  4. Friction surfacing is an advanced technique to create solid-state deposition of wide range of materials onto a similar or dissimilar material substrate. This paper describes the study of a novel method to deposit material onto a substrate by friction surfacing. In the friction surfacing technique, the heat is generated entirely by friction. This metallic deposition technique consists of a rotating consumable tool that rubs against the surface of the substrate, and due to the frictional heat and forging generated between the tool and substrate, material is deposited onto the substrate. The material transferred from the consumable tool to the substratemore »occurs from the side of the tool, while in the conventional friction surfacing method, the material transfer happens from the end of the tool. In this investigation, the single and double-pass deposition of A6063 aluminum alloy onto an A36 carbon steel substrate was successfully carried out. To study the influence of the process parameters on the friction depositions, the substrate was divided into three sections, while the applying forces were varied in each section. Process parameters such as tool rotational speeds, table traverse speeds and normal force were experimented. A customized JET JMD-18 milling machine was used to carry out the experiments. The influence of process parameters on the material deposition was characterized by means of roughness tester and optical microscope. The results of the study reveal that this novel method is capable to create an ultra-thin and smooth metallic deposition with excellent coverage. The material consumption during the single and double-pass deposition was evaluated, and the coating cross-section was assessed using the optical microscope.« less
  5. Heterogeneous bonding between metals and ceramics is of significant relevance to a wide range of applications in the fields of industry, defense, and aerospace. Metal/ceramic bonding can be used in various specific part applications such as vacuum tubes, automotive use of ceramic rotors, and rocket igniter bodies. However, the bonding of ceramic to metal has been challenging mainly due to (1) the low wettability of ceramics, on which the adhesion of molten adhesive bonders is limited and (2) the large difference between the coefficients of thermal expansion (CTE) of the two dissimilar bonded materials, which develops significant mechanical stresses atmore »the interface and potentially leads to mechanical failures. Vapor-phase deposition is a widely used thin film processing technique in both academic research laboratories and manufacturing industries. Since vapor phase coatings do not require wettability or hydrophobicity, a uniform and strongly adherent layer is deposited over virtually any substrate, including ceramics. In this presentation, we report on the effect of vapor phase-deposited interfacial metal layers on the mechanical properties of bonding between stainless steel and Zerodur (lithium aluminosilicate-based glass ceramic). Direct-current magnetron sputtering was utilized to deposit various thin interfacial layers containing Ti, Cu, or Sn. In addition, to minimize the unfavorable stress at the bonded interface due to the large CTE difference, a low temperature allow solder, that can be chemically and mechanically activated at temperatures of approximately 200 °C, was used. The solder is made from a composite of Ti-Sn-Ce-In. A custom-built fixture and universal testing machine were used to evaluate the bonding strength in shear, which was monitored in-situ with LabView throughout the measurement. The shear strength of the bonding between stainless steel and Zerodur was systematically characterized as a function of interfacial metal and metal processing temperature during sputter depositions. Maximum shear strength of the bonding of 4.36 MPa was obtained with Cu interfacial layers, compared to 3.53 MPa from Sn and 3.42 MPa from Ti adhesion promoting layers. These bonding strengths are significantly higher than those (~0.05 MPa) of contacts without interfacial reactive thin metals. The fracture surface microstructures are presented as well. It was found that the point of failure, when Cu interfacial layers were used, was between the coated Cu film and alloy bonder. This varied from the Sn and Ti interfacial layers where the main point of failure was between the interfacial film and Zerodur interface. The findings of the effect of thin adhesion promoting metal layers and failure behaviors may be of importance to some metal/ceramic heterogeneous bonding studies that require high bonding strength and low residual stresses at the bonding interface. The authors gratefully acknowledge the financial support of the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS.« less