skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chimpanzee fibroblasts exhibit greater adherence and migratory phenotypes than human fibroblasts
Background and objectives Previous work has identified that gene expression differences in cell adhesion pathways exist between humans and chimpanzees. Here, we used a comparative cell biology approach to assay interspecies differences in cell adhesion phenotypes in order to better understand the basic biological differences between species’ epithelial cells that may underly the organism-level differences we see in wound healing and cancer. Methodology We used skin fibroblast cell lines from humans and chimpanzees to assay cell adhesion and migration. We then utilized published RNA-Seq data from the same cell lines exposed to a cancer / wound-healing mimic to determine what gene expression changes may be corresponding to altered cellular adhesion dynamics between species. Results The functional adhesion and migration assays revealed that chimpanzee fibroblasts adhered sooner and remained adherent for significantly longer and move into a “wound” at faster rate than human fibroblasts. The gene expression data suggest that the enhanced adhesive properties of chimpanzee fibroblasts may be due to chimpanzee fibroblasts exhibiting significantly higher expression of cell and focal adhesion molecule genes than human cells, both during a wound healing assay and at rest. Conclusions and implications Chimpanzee fibroblasts exhibit stronger adhesion and greater cell migration than human fibroblasts. This may be due to divergent gene expression of focal adhesion and cell adhesion molecules, such as integrins, laminins, and cadherins, as well as ECM proteins like collagens. This is one of few studies demonstrating that these divergences in gene expression between closely related species can manifest in fundamental differences in cell biology. Our results provide better insight into species-specific cell biology phenotypes and how they may influence more complex traits, such as cancer metastasis and wound healing.  more » « less
Award ID(s):
1750377
PAR ID:
10222627
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
bioRxiv
ISSN:
2692-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During epithelial-to-mesenchymal transition (EMT), cancer cells lose their cell–cell adhesion junctions as they become more metastatic, altering cell motility and focal adhesion disassembly associated with increased detachment from the primary tumor and a migratory response into nearby tissue and vasculature. Current in vitro strategies characterizing a cell's metastatic potential heavily favor quantifying the presence of cell adhesion biomarkers through biochemical analysis; however, mechanical cues such as adhesion and motility directly relate to cell metastatic potential without needing to first identify a cell specific biomarker for a particular type of cancer. This paper presents a comprehensive comparison of two functional metrics of cancer aggression, wound closure migration velocity and cell detachment from a culture surface, for three pairs of epithelial cancer cell lines (breast, endometrium, tongue tissue origins). It was found that one functional metric alone was not sufficient to categorize the cancer cell lines; instead, both metrics were necessary to identify functional trends and accurately place cells on the spectrum of metastasis. On average, cell lines with low metastatic potential (MCF-7, Ishikawa, and Cal-27) were more aggressive through wound closure migration compared to loss of cell adhesion. On the other hand, cell lines with high metastatic potential (MDA-MB-231, KLE, and SCC-25) were on average more aggressive through loss of cell adhesion compared to wound closure migration. This trend was true independent of the tissue type where the cells originated, indicating that there is a relationship between metastatic potential and the predominate type of cancer aggression. Our work presents one of the first combined studies relating cell metastatic potential to functional migration and adhesion metrics across cancer cell lines from selected tissue origins, without needing to identify tissue-specific biomarkers to achieve success. Using functional metrics provides powerful clinical relevancy for future predictive tools of cancer metastasis. 
    more » « less
  2. null (Ed.)
    The human brain utilizes ~ 20% of all of the body’s metabolic resources, while chimpanzee brains use less than 10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell-type specific interspecies differences in brain gene expression, we conducted RNA-Seq on neural progenitor cells (NPCs), neurons, and astrocytes generated from induced pluripotent stem cells (iPSCs) from humans and chimpanzees. Interspecies differential expression (DE) analyses revealed that twice as many genes exhibit DE in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans. 
    more » « less
  3. Abstract The human brain utilizes ∼20% of all of the body's metabolic resources, while chimpanzee brains use <10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell type–specific interspecies differences in brain gene expression, we conducted RNA-seq on neural progenitor cells, neurons, and astrocytes generated from induced pluripotent stem cells from humans and chimpanzees. Interspecies differential expression analyses revealed that twice as many genes exhibit differential expression in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans. 
    more » « less
  4. Abstract BackgroundCollective cell migration underlies many essential processes, including sculpting organs during embryogenesis, wound healing in the adult, and metastasis of cancer cells. At mid-oogenesis,Drosophilaborder cells undergo collective migration. Border cells round up into a small group at the pre-migration stage, detach from the epithelium and undergo a dynamic and highly regulated migration at the mid-migration stage, and stop at the oocyte, their final destination, at the post-migration stage. While specific genes that promote cell signaling, polarization of the cluster, formation of protrusions, and cell-cell adhesion are known to regulate border cell migration, there may be additional genes that promote these distinct active phases of border cell migration. Therefore, we sought to identify genes whose expression patterns changed during border cell migration. ResultsWe performed RNA-sequencing on border cells isolated at pre-, mid-, and post-migration stages. We report that 1,729 transcripts, in nine co-expression gene clusters, are temporally and differentially expressed across the three migration stages. Gene ontology analyses and constructed protein-protein interaction networks identified genes expected to function in collective migration, such as regulators of the cytoskeleton, adhesion, and tissue morphogenesis, but also uncovered a notable enrichment of genes involved in immune signaling, ribosome biogenesis, and stress responses. Finally, we validated the in vivo expression and function of a subset of identified genes in border cells. ConclusionsOverall, our results identified differentially and temporally expressed genetic networks that may facilitate the efficient development and migration of border cells. The genes identified here represent a wealth of new candidates to investigate the molecular nature of dynamic collective cell migrations in developing tissues. 
    more » « less
  5. DNA is replicated according to a defined spatiotemporal program that is linked to both gene regulation and genome stability. The evolutionary forces that have shaped replication timing programs in eukaryotic species are largely unknown. Here, we studied the molecular causes and consequences of replication timing evolution across 94 humans, 95 chimpanzees, and 23 rhesus macaques. Replication timing differences recapitulated the species’ phylogenetic tree, suggesting continuous evolution of the DNA replication timing program in primates. Hundreds of genomic regions had significant replication timing variation between humans and chimpanzees, of which 66 showed advances in replication origin firing in humans, while 57 were delayed. Genes overlapping these regions displayed correlated changes in expression levels and chromatin structure. Many human–chimpanzee variants also exhibited interindividual replication timing variation, pointing to ongoing evolution of replication timing at these loci. Association of replication timing variation with genetic variation revealed that DNA sequence evolution can explain replication timing variation between species. Taken together, DNA replication timing shows substantial and ongoing evolution in the human lineage that is driven by sequence alterations and could impact regulatory evolution at specific genomic sites. 
    more » « less