skip to main content


Title: Chimpanzee fibroblasts exhibit greater adherence and migratory phenotypes than human fibroblasts
Background and objectives Previous work has identified that gene expression differences in cell adhesion pathways exist between humans and chimpanzees. Here, we used a comparative cell biology approach to assay interspecies differences in cell adhesion phenotypes in order to better understand the basic biological differences between species’ epithelial cells that may underly the organism-level differences we see in wound healing and cancer. Methodology We used skin fibroblast cell lines from humans and chimpanzees to assay cell adhesion and migration. We then utilized published RNA-Seq data from the same cell lines exposed to a cancer / wound-healing mimic to determine what gene expression changes may be corresponding to altered cellular adhesion dynamics between species. Results The functional adhesion and migration assays revealed that chimpanzee fibroblasts adhered sooner and remained adherent for significantly longer and move into a “wound” at faster rate than human fibroblasts. The gene expression data suggest that the enhanced adhesive properties of chimpanzee fibroblasts may be due to chimpanzee fibroblasts exhibiting significantly higher expression of cell and focal adhesion molecule genes than human cells, both during a wound healing assay and at rest. Conclusions and implications Chimpanzee fibroblasts exhibit stronger adhesion and greater cell migration than human fibroblasts. This may be due to divergent gene expression of focal adhesion and cell adhesion molecules, such as integrins, laminins, and cadherins, as well as ECM proteins like collagens. This is one of few studies demonstrating that these divergences in gene expression between closely related species can manifest in fundamental differences in cell biology. Our results provide better insight into species-specific cell biology phenotypes and how they may influence more complex traits, such as cancer metastasis and wound healing.  more » « less
Award ID(s):
1750377
NSF-PAR ID:
10222627
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
bioRxiv
ISSN:
2692-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The human brain utilizes ~ 20% of all of the body’s metabolic resources, while chimpanzee brains use less than 10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell-type specific interspecies differences in brain gene expression, we conducted RNA-Seq on neural progenitor cells (NPCs), neurons, and astrocytes generated from induced pluripotent stem cells (iPSCs) from humans and chimpanzees. Interspecies differential expression (DE) analyses revealed that twice as many genes exhibit DE in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans. 
    more » « less
  2. Abstract

    The human brain utilizes ∼20% of all of the body's metabolic resources, while chimpanzee brains use <10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell type–specific interspecies differences in brain gene expression, we conducted RNA-seq on neural progenitor cells, neurons, and astrocytes generated from induced pluripotent stem cells from humans and chimpanzees. Interspecies differential expression analyses revealed that twice as many genes exhibit differential expression in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans.

     
    more » « less
  3. Abstract Background

    Collective cell migration underlies many essential processes, including sculpting organs during embryogenesis, wound healing in the adult, and metastasis of cancer cells. At mid-oogenesis,Drosophilaborder cells undergo collective migration. Border cells round up into a small group at the pre-migration stage, detach from the epithelium and undergo a dynamic and highly regulated migration at the mid-migration stage, and stop at the oocyte, their final destination, at the post-migration stage. While specific genes that promote cell signaling, polarization of the cluster, formation of protrusions, and cell-cell adhesion are known to regulate border cell migration, there may be additional genes that promote these distinct active phases of border cell migration. Therefore, we sought to identify genes whose expression patterns changed during border cell migration.

    Results

    We performed RNA-sequencing on border cells isolated at pre-, mid-, and post-migration stages. We report that 1,729 transcripts, in nine co-expression gene clusters, are temporally and differentially expressed across the three migration stages. Gene ontology analyses and constructed protein-protein interaction networks identified genes expected to function in collective migration, such as regulators of the cytoskeleton, adhesion, and tissue morphogenesis, but also uncovered a notable enrichment of genes involved in immune signaling, ribosome biogenesis, and stress responses. Finally, we validated the in vivo expression and function of a subset of identified genes in border cells.

    Conclusions

    Overall, our results identified differentially and temporally expressed genetic networks that may facilitate the efficient development and migration of border cells. The genes identified here represent a wealth of new candidates to investigate the molecular nature of dynamic collective cell migrations in developing tissues.

     
    more » « less
  4. Abstract Directed cell migration in complex micro-environments, such as in vivo pores, is important for predicting locations of artificial tissue growth and optimizing scaffold architectures. Yet, the directional decisions of cells facing multiple physiochemical cues have not been characterized. Hence, we aim to provide a ranking of the relative importance of the following cues to the decision-making of individual fibroblast cells: chemoattractant concentration gradient, channel width, mitosis, and contact-guidance. In this study, bifurcated micro-channels with branches of different widths were created. Fibroblasts were then allowed to travel across these geometries by following a gradient of platelet-derived growth factor-BB (PDGF-BB) established inside the channels. Subsequently, a combination of statistical analysis and image-based diffusion modeling was used to report how the presence of multiple complex migration cues, including cell-cell influences, affect the fibroblast decision-making. It was found that the cells prefer wider channels over a higher chemoattractant gradient when choosing between asymmetric bifurcated branches. Only when the branches were symmetric in width did the gradient become predominant in directing which path the cell will take. Furthermore, when both the gradient and the channels were symmetric, contact guidance became important for guiding the cells in making directional choices. Based on these results we were able to rank these directional cues from most influential to the least as follows: mitosis > channel width asymmetry > chemoattractant gradient difference > and contact-guidance. It is expected that these results will benefit the fields of regenerative medicine, wound healing and developmental biology. 
    more » « less
  5. Yap, Alpha (Ed.)
    Vinculin is a protein found in both focal adhesions (FAs) and adherens junctions (AJs) which regulates actin connectivity to these structures. Many studies have demonstrated that mechanical perturbations of cells result in enhanced recruitment of vinculin to FAs and/or AJs. Likewise, many other studies have shown “cross-talk” between FAs and AJs. Vinculin itself has been suggested to be a probable regulator of this adhesion cross-talk. In this study we used MDCK as a model system of epithelia, developing cell lines in which vinculin recruitment was reduced or enhanced at AJs. Careful analysis of these cells revealed that perturbing vinculin recruitment to AJs resulted in a reduction of detectable FAs. Interestingly the cross-talk between these two structures was not due to a limited pool of vinculin, as increasing expression of vinculin did not rescue FA formation. Instead, we demonstrate that vinculin translocation between AJs and FAs is necessary for actin cytoskeleton rearrangements that occur during cell migration, which is necessary for large, well-formed FAs. Last, we show using a wound assay that collective cell migration is similarly hindered when vinculin recruitment is reduced or enhanced at AJs, highlighting that vinculin translocation between each compartment is necessary for efficient collective migration. 
    more » « less