Abstract It is widely agreed that subseasonal-to-seasonal (S2S) predictability arises from the atmospheric initial state during early lead times and from the land and ocean during long lead times. We test this hypothesis for the large-scale mid-latitude atmosphere by training numerous XGBoost models to predict weather regimes (WRs) over North America at 1-to-8-week lead times. Each model uses a different predictor from one Earth system component (atmosphere, ocean, or land) sourced from reanalysis. According to the models, the atmosphere provides more predictability during the first two forecast weeks, and the three components performed similarly afterward. However, the skill and sources of predictability are highly dependent on the season and target WR. Our results show greater WR predictability in fall and winter, particularly for the Pacific Trough and Pacific Ridge regimes, driven primarily by the ocean (e.g., El Niño-Southern Oscillation and sea ice). For the Pacific Ridge in winter, the stratosphere also contributes significantly to predictability across most S2S lead times. Additionally, the initial large-scale tropospheric structure (encompassing the tropics and extra-tropics, e.g., Madden-Julian Oscillation) and soil conditions play a relevant role—most notably for the Greenland High regime in winter. This study highlights previously identified sources of predictability for the large-scale atmosphere and gives insight into new sources for future study. Given how closely linked WRs are to surface precipitation and temperature anomalies, storm tracks, and extreme events, the study results contribute to improving S2S prediction of surface weather. 
                        more » 
                        « less   
                    
                            
                            Subseasonal Prediction with and without a Well-Represented Stratosphere in CESM1
                        
                    
    
            Abstract There is a growing demand for understanding sources of predictability on subseasonal to seasonal (S2S) time scales. Predictability at subseasonal time scales is believed to come from processes varying slower than the atmosphere such as soil moisture, snowpack, sea ice, and ocean heat content. The stratosphere as well as tropospheric modes of variability can also provide predictability at subseasonal time scales. However, the contributions of the above sources to S2S predictability are not well quantified. Here we evaluate the subseasonal prediction skill of the Community Earth System Model, version 1 (CESM1), in the default version of the model as well as a version with the improved representation of stratospheric variability to assess the role of an improved stratosphere on prediction skill. We demonstrate that the subseasonal skill of CESM1 for surface temperature and precipitation is comparable to that of operational models. We find that a better-resolved stratosphere improves stratospheric but not surface prediction skill for weeks 3–4. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1652289
- PAR ID:
- 10222659
- Date Published:
- Journal Name:
- Weather and Forecasting
- Volume:
- 35
- Issue:
- 6
- ISSN:
- 0882-8156
- Page Range / eLocation ID:
- 2589 to 2602
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The effect of machine learning and other enhancements on statistical–dynamical forecasts of soil moisture (0–10 and 0–100 cm) and a reference evapotranspiration fraction [evaporative stress index (ESI)] on subseasonal time scales (15–28 days) are explored. The predictors include the current and past land surface conditions and dynamical model hindcasts from the Subseasonal to Seasonal Prediction project (S2S). When the methods are enhanced with machine learning and other improvements, the increases in skill are almost exclusively coming from predictors drawn from observations of current and past land surface states. This suggests that operational S2S flash drought forecasts should focus on optimizing use of information on current conditions rather than on integrating dynamically based forecasts, given the current state of knowledge. Nonlinear machine learning methods lead to improved skill over linear methods for soil moisture but not for ESI. Improvements for both soil moisture and ESI are realized by increasing the sample size by including surrounding grid points in training and increasing the number of predictors. In addition, all the improvements in the soil moisture forecasts predominantly impact soil moistening rather than soil drying—i.e., prediction of conditions moving away from drought rather than into drought—especially when the initial soil state is drier than normal. The physical reasons for the nonlinear machine learning improvements are also explored. Significance StatementRapidly intensifying droughts pose extra challenges for predictability. Here, dynamical forecast model output is combined with nonlinear machine learning methods to improve forecasts of rapid changes in soil moisture and the evaporative stress index (ESI).more » « less
- 
            Abstract The Madden‐Julian oscillation (MJO) is the leading source of global subseasonal predictability; however, many dynamical forecasting systems struggle to predict MJO propagation through the Maritime Continent. Better understanding the biases in simulated physical processes associated with MJO propagation is the key to improve MJO prediction. In this study, MJO prediction skill, propagation processes, and mean state biases are evaluated in reforecasts from models participating in the Subseasonal Experiment (SubX) and Subseasonal to Seasonal (S2S) prediction projects. SubX and S2S reforecasts show MJO prediction skill out to 4.5 weeks based on the Real‐time Multivariate MJO index consistent with previous studies. However, a closer examination of these models' representation of MJO propagation through the Maritime Continent reveals that they fail to predict the MJO convection, associated circulations, and moisture advection processes beyond 10 days with most of models underestimating MJO amplitude. The biases in the MJO propagation can be partly associated with the following mean biases across the Indo‐Pacific: a drier low troposphere, excess surface precipitation, more frequent occurrence of light precipitation rates, and a transition to stronger precipitation rates at lower humidity than in observations. This indicates that deep convection occurs too frequently in models and is not sufficiently inhibited when tropospheric moisture is low, which is likely due to the representation of entrainment.more » « less
- 
            Abstract Wintertime cold air outbreaks (CAOs) in the Great Plains of the United States have significant socioeconomic, environmental, and infrastructural impacts; the events of December 1983 and February 2021 are key examples of this. Previous studies have investigated CAOs in other parts of North America, particularly the eastern United States, but the development of CAOs in the Great Plains and their potential subseasonal-to-seasonal (S2S) predictability have yet to be assessed. This study first identifies 37 large-scale CAOs in the Great Plains between 1950 and 2021, before examining their characteristics, evolution, and driving mechanisms. These events occur under two dominant weather regimes at event onset: one set associated with anomalous ridging over Alaska and the other set associated with anomalous pan-Arctic ridging. Alaskan ridge CAOs evolve quickly (i.e., on synoptic time scales) and involve stratospheric wave reflection. Conversely, Arctic high CAOs are preceded by weak stratospheric polar vortex conditions several weeks prior to the event. Both categories of CAOs feature anomalous upward wave activity flux from Siberia, with downward wave activity flux over Canada seen only in the Alaskan ridge CAOs. The rapid development of the Alaskan ridge CAOs, also linked with a North Pacific wave train and anomalous wave activity flux from the central Pacific, suggests that these events could be forced by tropical modes of variability. These findings present evidence that different forcing mechanisms, with contrasting time scales, may produce distinct sources of predictability for these CAOs on the S2S time scale.more » « less
- 
            Abstract Skillfully predicting the North Atlantic Oscillation (NAO), and the closely related northern annular mode (NAM), on ‘subseasonal’ (weeks to less than a season) timescales is a high priority for operational forecasting centers, because of the NAO’s association with high-impact weather events, particularly during winter. Unfortunately, the relatively fast, weather-related processes dominating total NAO variability are unpredictable beyond about two weeks. On longer timescales, the tropical troposphere and the stratosphere provide some predictability, but they contribute relatively little to total NAO variance. Moreover, subseasonal forecasts are only sporadically skillful, suggesting the practical need to identify the fewer potentially predictable events at the time of forecast. Here we construct an observationally based linear inverse model (LIM) that predicts when, and diagnoses why, subseasonal NAO forecasts will be most skillful. We use the LIM to identify those dynamical modes that, despite capturing only a fraction of overall NAO variability, are largely responsible for extended-range NAO skill. Predictable NAO events stem from the linear superposition of these modes, which represent joint tropical sea-surface temperature-lower stratosphere variability plus a single mode capturing downward propagation from the upper stratosphere. Our method has broad applicability because both the LIM and the state-of-the-art European Centre for Medium-Range Weather Forecasts Integrated Forecast System (IFS) have higher (and comparable) skill for the same set of predicted high skill forecast events, suggesting that the low-dimensional predictable subspace identified by the LIM is relevant to real-world subseasonal NAO predictions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    